Fast Multilevel Methods for the Helmholtz Equation

Schnelle Löser fur Partielle Differentialgleichungen
May 11-17, 2014, Mathematisches Forschungsinstitut Oberwolfach , Germany

Kees Vuik, Abdul Sheikh and Domenico Lahaye
http://ta.twi.tudelft.nl/users/vuik/
May 15, 2014

Application: geophysical survey

Marine Seismic

Application: geophysical survey

hard Marmousi Model

Application: geophysical survey

hard Marmousi Model (2006)

Contents

1. Introduction
2. Preconditioning (2002-2008)
3. Numerical experiments
4. Second-level preconditioning (2008-2014)
5. Fourier Analysis of two-level methods
6. Numerical experiments
7. Conclusions

1. Introduction

The Helmholtz equation without damping

$$
-\Delta \mathbf{u}(x, y)-k^{2}(x, y) \mathbf{u}(x, y)=\mathbf{g}(x, y) \text { in } \Omega
$$

$\mathbf{u}(x, y)$ is the pressure field, $\mathbf{k}(x, y)$ is the wave number, $\mathrm{g}(x, y)$ is the point source function and
Ω is the domain. Absorbing boundary conditions are used on Γ.

$$
\frac{\partial \mathbf{u}}{\partial n}-\iota \mathbf{u}=0
$$

n is the unit normal vector pointing outwards on the boundary.
Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

Problem description

- Second order Finite Difference stencil:

$$
\left[\begin{array}{ccc}
& -1 & \\
-1 & 4-k^{2} h^{2} & -1 \\
& -1 &
\end{array}\right]
$$

- Linear system $A u=g$: properties

Sparse \& complex valued
Symmetric \& Indefinite for large k

- For high resolution a very fine grid is required: $10-20$ gridpoints per wavelength $\rightarrow A$ is extremely large!
- Is traditionally solved by a Krylov subspace method, which exploits the sparsity.

2. Preconditioning

Equivalent linear system $M_{1}^{-1} A M_{2}^{-1} \tilde{x}=\tilde{b}$, where $M=M_{1} \cdot M_{2}$ is the preconditioning matrix and

$$
\tilde{x}=M_{2} x, \quad \tilde{b}=M_{1} b .
$$

Requirements for a preconditioner

- better spectral properties of $M^{-1} A$
- cheap to perform $M^{-1} r$.

Spectrum of A is $\left\{\mu_{i}-k^{2}\right\}$, with k a given constant and μ_{i} are the eigenvalues of the Laplace operator. Note that $\mu_{1}-k^{2}$ may be negative.

Preconditioning (overview)

ILU	Meijerink and van der Vorst, 1977
ILU(tol)	Saad, 2003

SPAI Grote and Huckle, 1997
Multigrid Lahaye, 2001
Elman, Ernst and O' Leary, 2001

AILU Gander and Nataf, 2001
analytic parabolic factorization
ILU-SV Plessix and Mulder, 2003
separation of variables

Preconditioning (Laplace type)

Laplace operator Bayliss and Turkel, 1983
Definite Helmholtz Laird, 2000
Shifted Laplace
Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner (SLP)

$$
M \equiv-\Delta-\left(\beta_{1}-\mathbf{i} \beta_{2}\right) k^{2}, \quad \beta_{1}, \beta_{2} \in \mathbb{R}, \text { and } \beta_{1} \leq 0
$$

Condition $\beta_{1} \leq 0$ is used to ensure that M is a (semi) definite operator.
$\rightarrow \beta_{1}, \beta_{2}=0 \quad: \quad$ Bayliss and Turkel
$\rightarrow \beta_{1}=1, \beta_{2}=0 \quad: \quad$ Laird
$\rightarrow \beta_{1}=-1, \beta_{2}=0.5 \quad$: Y.A. Erlangga, C. Vuik and C.W.Oosterlee

3. Numerical experiments

Example with constant k in Ω
Iterative solver: Bi-CGSTAB
Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	ILU(0.01)	M_{0}	M_{1}	M_{i}
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	>1000	150	52

Spectrum of SLP

References: Manteuffel, Parter, 1990; Yserentant, 1988
Since L and M are SPD we have the following eigenpairs

$$
L v_{j}=\lambda_{j} M v_{j}, \text { where, } \lambda_{j} \in \mathbb{R}^{+}
$$

The eigenvalues σ_{j} of the preconditioned matrix satisfy

$$
\left(L-z_{1} M\right) v_{j}=\sigma_{j}\left(L-z_{2} M\right) v_{j} .
$$

Theorem 1
Provided that $z_{2} \neq \lambda_{j}$, the relation

$$
\sigma_{j}=\frac{\lambda_{j}-z_{1}}{\lambda_{j}-z_{2}} \text { holds. }
$$

Spectrum of SLP

Theorem 2
If $\beta_{2}=0$, the eigenvalues $\sigma_{r}+\mathbf{i} \sigma_{i}$ are located on the straight line in the complex plane given by

$$
\beta_{1} \sigma_{r}-\left(\alpha_{1}-\alpha_{2}\right) \sigma_{i}=\beta_{1} .
$$

Theorem 3
If $\beta_{2} \neq 0$, the eigenvalues $\sigma_{r}+\mathbf{i} \sigma_{i}$ are on the circle in the complex plane with center c and radius R :

$$
c=\frac{z_{1}-\bar{z}_{2}}{z_{2}-\bar{z}_{2}}, \quad R=\left|\frac{z_{2}-z_{1}}{z_{2}-\bar{z}_{2}}\right|
$$

Note that if $\beta_{1} \beta_{2}>0$ the origin is not enclosed in the circle.

Eigenvalues for Complex preco $k=100$

spectrum is independent of the grid size

75 grid points

150 grid points

Inner iteration

Possible solvers for solution of $M z=r$:

- ILU approximation of M
- inner iteration with ILU as preconditioner
- Multigrid

Multigrid components

- geometric multigrid
- Gauss-Seidel with red-black ordering
- matrix dependent interpolation, full weighting restriction
- Galerkin coarse grid approximation

Numerical results for a wedge problem

k_{2}	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	$201(0.56)$	$1028(12)$	$5170(316)$	-	-
ILU $(A, 0)$	$55(0.36)$	$348(9)$	$1484(131)$	$2344(498)$	-
ILU $(A, 1)$	$26(0.14)$	$126(4)$	$577(62)$	$894(207)$	-
ILU $(M, 0)$	$57(0.29)$	$213(8)$	$1289(122)$	$2072(451)$	-
ILU $(M, 1)$	$28(0.28)$	$116(4)$	$443(48)$	$763(191)$	$2021(1875)$
MG(V(1,1))	$13(0.21)$	$38(3)$	$94(28)$	$115(82)$	$252(850)$

Spectrum with inner iteration

2 MG iterations

4. Second Level Precond. (2008-2014)

Summary so far

- ILU and variants
- From Laplace to complex Shifted Laplace Preconditioner (2005)
- Shifted Laplace Preconditioner (SLP)

$$
M:=-\Delta \mathbf{u}-\left(\beta_{1}-\iota \beta_{2}\right) k^{2} \mathbf{u}
$$

- Results show: $\left(\beta_{1}, \beta_{2}\right)=(1,0.5)$ is the shift of choice
- Properties of SLP?

Shifted Laplace Preconditioner (SLP)

- Introduces damping, Multi-grid approximation is possible
- The modulus of all eigenvalues of the preconditioned operator is bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1}(1,0.5) A$ for

$$
k=30 \quad \text { and } \quad k=120
$$

Spectrum as function of k

Deflation: or two-grid method

Deflation, a projection preconditioner

$$
P=I-A Q, \quad \text { with } \quad Q=Z E^{-1} Z^{T} \text { and } E=Z^{T} A Z
$$

where,
$Z \in R^{n \times r}$, with deflation vectors $Z=\left[z_{1}, \ldots, z_{r}\right], \operatorname{rank}(Z)=r \leq n$
Along with a traditional preconditioner M, deflated preconditioned system reads

$$
P M^{-1} A u=P M^{-1} g .
$$

Deflation vectors shifted the eigenvalues to zero.

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z=I_{h}^{2 h}$ and $Z^{T}=I_{2 h}^{h}$ then

$$
P_{h}=I_{h}-A_{h} Q_{h}, \quad \text { with } \quad Q_{h}=I_{h}^{2 h} A_{2 h}^{-1} I_{2 h}^{h} \quad \text { and } A_{2 h}=I_{2 h}^{h} A_{h} I_{h}^{2 h}
$$

where
P_{h} can be interpreted as a coarse grid correction and
Q_{h} as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_{h},

$$
M_{h}^{-1} P_{h} A_{h} u_{h}=M_{h}^{-1} P_{h} g_{h}
$$

$A_{h} u_{h}=g_{h}$ is preconditioned by the two-level preconditioner $M_{h}^{-1} P_{h}$.
For large problems, $A_{2 h}$ is too large to invert exactly. Inversion of $A_{2 h}$ is sensitive, since P_{h} deflates the spectrum to zero.

To do: Solve $A_{2 h}$ iteratively to a required accuracy on certain levels, and shift the deflated spectrum to $\lambda_{h}^{\max }$ by adding a shift in the two level preconditioner. This leads to the ADEF1 preconditioner

$$
P_{(h, A D E F 1)}=M_{h}^{-1} P_{h}+\lambda_{h}^{\max } Q_{h}
$$

Deflation: MLKM

Multi Level Krylov Method a, take $\hat{A}_{h}=M_{h}^{-1} A_{h}$, and define \hat{P}_{h} by using \hat{A}_{h} (instead of A_{h}) will be

$$
\hat{P}_{h}=I_{h}-\hat{A}_{h} \hat{Q}_{h},
$$

where

$$
\hat{Q}_{h}=I_{h}^{2 h} \hat{A}_{2 h}^{-1} I_{2 h}^{h} \text { and } \hat{A}_{2 h}=I_{2 h}^{h} \hat{A}_{h} I_{h}^{2 h}=I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h}
$$

Construction of coarse matrix $A_{2 h}$ at level $2 h$ costs inversion of preconditioner at level h.
Approximate $A_{2 h}$

Ideal

$$
\begin{array}{l|l}
\hat{A}_{2 h}=I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h} & \hat{A}_{2 h}=I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h} \\
\hat{A}_{2 h} \approx I_{2 h}^{h} I_{h}^{2 h} M_{2 h}^{-1} A_{2 h}
\end{array}
$$

[^0]
5. Fourier Analysis of two-level methods

Dirichlet boundary conditions for analysis.
With above deflation,

$$
\mathbf{\operatorname { s p e c }}\left(P M^{-1} A\right)=f\left(\beta_{1}, \beta_{2}, k, h\right)
$$

is a complex valued function.
Setting $k h=0.625$,

- Spectrum of $P M^{-1} A$ with shifts $(1,0.5)$ is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1 .

Fourier Analysis

ADEF1: Analysis shows spectrum clustered around 1 with few outliers.

$$
k=30
$$

$k=120$

Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM ${ }^{\oplus}$,
$k=160$ and $20 \mathrm{gp} / \mathrm{wl}$

Ideal

Practical

6. Numerical results

Number of GMRES iterations for the 1D Helmholtz equation

$$
10 \leq k \leq 800
$$

Numerical results

Number of GMRES iterations for the 1D Helmholtz equation

$$
1000 \leq k \leq 20000
$$

Application: geophysical survey

hard Marmousi Model

Application: geophysical survey

hard Marmousi Model, PETSc solver
$k h=0.39, \mathrm{Bi}-\mathrm{CGSTAB}$ for SLP, $\operatorname{FGMRES}(20)$ for $\operatorname{ADEF} 1(8,2,1)$

Frequency f	Solve Time		Iterations	
	SLP-F	ADEF1-F	SLP-F	ADEF1-F
1	1.22	5.07	13	7
10	10.18	9.43	112	13
20	72.16	60.32	189	22
40	550.20	426.79	354	39

Application: geophysical survey

Cube with constant k

Application: geophysical survey

Cube with constant k

Wave number	Solve Time		Iterations	
k	SLP-F	ADEF1-F	SLP-F	ADEF1-F
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

Application: geophysical survey

Cube with constant k

7. Conclusions

- The proposed preconditioner (shifted Laplacian + multi-grid) is independent of the grid size and linearly dependent of k.
- With physical damping the proposed preconditioner is also independent of k.
- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k.

For large k is scales again linearly.

- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

Open Questions

- Can ADEF1 also be rewritten as a 'standard' Multi-grid method?
- Why is the behavior of the near null eigenvectors so 'bad'?

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
- M.B. van Giizen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. Numerical Linear Algebra with Applications, 20, pp. 645-662, 2013
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

[^0]: ${ }^{\text {a }}$ Erlangga, Y.A and Nabben R., ETNA 2008

