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1. Introduction

Motivation
Knowledge of the fluid pressure in rock layers is important for an oil

company to predict the presence of oil and gas in reservoirs.

The earth’s crust has a layered structure
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Mathematical model

Computation of fluid pressure −div(σ∇p(x)) = 0 on Ω, p fluid pressure,

σ permeability
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Properties and Applications

Ax = b

A is sparse and SPD

Condition number of A is O(107), due to large contrast in permeability

Applications

- reservoir simulations
- porous media flow
- electrical power networks
- semiconductors
- magnetic field simulations

- fictitious domain methods
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2. IC preconditioned CG

Error estimate

Ax = b

M−1Ax = M−1b

x− xk = (M−1A)−1M−1A(x− xk)

‖x− xk‖2 ≤ 1
λmin

‖M−1rk‖2

λmin: smallest eigenvalue of M−1A
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Test problem

earth surface

shale

sandstone
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Configuration with 7 straight layers
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Convergence CG
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Convergence CG
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Convergence ICCG
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Spectrum of IC preconditioned matrix

L is the Incomplete Cholesky factor of A

ks is the number of high-permeability domains not connected to a
Dirichlet boundary

D is a diagonal matrix (dii > 0) and Â = D−
1

2AD−
1

2

Theorem 1 (scaling invariance)

L−1AL−T and L̂−1ÂL̂−T are identical.

Proof:

L̂ = D−
1

2L and L̂−1ÂL̂−T = L−1D
1

2 (D−
1

2AD−
1

2 )D
1

2L−T = L−1AL−T .
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Spectrum of IC preconditioned matrix

Take D =diag(A)

Theorem 2

Â has ks eigenvalues of O(ε), where ε is the ratio between high and

low permeability.

Theorem 3

The IC preconditioned matrix L−1AL−T has ks eigenvalues of O(ε).

Proof: Scaling invariance (Theorem 1) implies

spectrum(L−1AL−T ) = spectrum(L̂−1ÂL̂−T )

In [Vuik, Segal, Meijerink, Wijma, 2001] we have shown that the

number and size of small eigenvalues of Â and L̂−1ÂL̂−T are the
same. The theorem is proven by using Theorem 2. ⊠
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3. Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M−1Ar

Block Preconditioned Krylov
m
∑

i=1

(M−1
i )Ar

Block Preconditioned Deflated Krylov
m
∑

i=1

(M−1
i )PAr
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3. Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Various choices are possible:

• Projection vectors
Physical vectors, eigenvectors, coarse grid projection vectors

(constant, linear, ...)

• Projection method
Deflation, coarse grid projection, balancing, augmented, FETI

• Implementation
sparseness, with(out) using projection properties, optimized, ...
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Literature

Deflated CG (start)

Nicolaides 1987, Mansfield 1990
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Deflated ICCG

A is SPD, Conjugate Gradients

P = I −AZE−1ZT with E = ZTAZ

and Z = [z1...zm], where z1, ..., zm are independent deflation vectors.

Properties

1. P TZ = 0 and PAZ = 0

2. P 2 = P

3. AP T = PA
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Deflated ICCG

x = (I − P T )x+ P Tx

(I − P T )x = ZE−1ZTAx = ZE−1ZT b, AP Tx = PAx = Pb
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Deflated ICCG

x = (I − P T )x+ P Tx

(I − P T )x = ZE−1ZTAx = ZE−1ZT b, AP Tx = PAx = Pb

DICCG

k = 0, r̂0 = Pr0, p1 = z1 = L−TL−1r̂0;

while ‖r̂k‖2 > ε do

k = k + 1;

αk = (r̂k−1,zk−1)
(pk,PApk)

;

xk = xk−1 + αkpk;
r̂k = r̂k−1 − αkPApk;

zk = L−TL−1r̂k;

βk = (r̂k,zk)
(r̂k−1,zk−1)

; pk+1 = zk + βkpk;

end while
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Convergence and termination criterion

Choose z1 , z2 , z3 eigenvectors of L−TL−1A

Convergence

‖P Tx− P Txk‖2 ≤ 2
√
K‖P Tx− P Tx0‖2

(√
K − 1√
K + 1

)k

where K = λn

λ4

Termination criterion

‖L−TL−1Pb− L−TL−1PAxk‖2 ≤ δ

λ4
implies ‖P Tx− P Txk‖2 ≤ δ

‘
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Deflation vectors

Choose eigenvectors of L−TL−1A. Properties of cross sections:

• a constant value in sandstone layers

• in shale layers their graph is linear
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Eigenvectors of L−T
L
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A
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4. Physical deflation vectors

k is number of subdomains

Ωi, i = 1, ..., ks high-permeability subdomains without a Dirichlet B.C.;

i = ks + 1, ..., kh remaining high-permeability subdomains

• define zi for i ∈ {1, ..., ks}
• zi = 1 on Ω̄i and zi = 0 on Ω̄j , j 6= i, j ∈ {1, ..., kh}
• zi satisfies equation:

−div(σj∇zi) = 0 on Ωj , j ∈ {kh + 1, ..., k},

with appropriate boundary conditions

Sparse vectors, subproblems are cheap to solve
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Physical deflation vectors

Example with ks = 2, kh = 3, and k = 5
The geometry

δ Ω
N

δ Ω
N

δ Ω
D

δ Ω
NΩ

1
Ω

2
Ω

3
Ω

4
Ω

5

The first projection vector The second projection vector
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Physical deflation vectors

Example with ks = 2, kh = 3, and k = 5
The first projection vector The second projection vector
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Properties

Theorem 4

The deflation vectors are such that for D = diag(A)

• ‖D−1Azi‖∞ = O(ε)

• ‖L−TL−1Azi‖2 = O(ε)

Define Z = [z1...zks ] and U = [u1...uks ], where ui are ’small’

eigenvectors.

Theorem 5

There is a matrix X such that Z = UX + E, with ‖E‖2 = O(
√
ε)
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Sensitivity of deflation vectors

• Random vector added in shale layers (amplitude α/2)

α 0 10−1 1 ICCG

λper 0.164 0.164 8.2 · 10−3 1.6 · 10−9

iter 14 15 24 54

• Random vector added to the nonzero parts

α 0 10−3 10−1
ICCG

λper 0.164 9 · 10−4 9 · 10−8 1.6 · 10−9

iter 14 27 56 54

After perturbation the smallest eigenvalues remain exactly zero,
however, the smallest non-zero eigenvalue can change considerably.
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Geometry oil flow problem
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Results oil flow problem

Varying σshale

σ ICCG DICCG

λmin iter λmin iter

10−3 1.5 · 10−2 26 6.9 · 10−2 20

10−5 2.2 · 10−4 59 7.7 · 10−2 20

10−7 2.3 · 10−6 82 7.7 · 10−2 20

Varying accuracy

accuracy ICCG DICCG

iter CPU iter CPU

10−5 82 18.9 20 6.3

10−3 78 18.0 12 4.1

10−1 75 17.2 2 1.2
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A groundwater flow problem

The pressure in groundwater satisfies the equation:

−∇ · (A∇u) = F, (1)

where the coefficients and geometry of the problem are:
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A groundwater flow problem

The low permeable layer (A = 10−5) and the jump in permeabilities
between the two sand sections lead to a ’small’ eigenvalue.
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5. Conclusions

• DICCG is a robust and efficient method to solve diffusion
problems with discontinuous coefficients.

• The choice of the projection vectors is important for the success
of a projection method.

• For layered problems the physical deflation vectors are the
optimal choice for the projection vectors.

• For many problems a second level preconditioner (Deflation)
saves a lot of CPU time.
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Problem Definition

Optimal Control

Figure : Optimal Control1.

1
MRST [1]
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Problem Definition

Reservoir Simulation
Single-phase flow through porous media [2]

Darcy’s law + mass balance equation

−∇ ·
[
αρ

µ
~K(∇p− ρg∇d)

]
+ αρφct

∂p

∂t
− αρq = 0.

ct = (cl + cr),

α a geometric factor

ρ fluid density

µ fluid viscosity

p pressure

~K rock permeability

g gravity

d depth

φ rock porosity

q sources

cr rock compressibility

cl liquid compressibility

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 3 / 25



Problem Definition

Discretization
2D case, isotropic permeability, small rock and fluid compressibilities,
uniform reservoir thickness and no gravity forces.

− h

µ

∂

∂x

(
k
∂p

∂x

)
− h

µ

∂

∂y

(
k
∂p

∂y

)
− h

µ

∂

∂z

(
k
∂p

∂z

)
+ hφ0ct

∂p

∂t
− hq = 0.

Vṗ + T p = q.

Accumulation matrix

V = Vctφ0I,

V = h∆x∆y∆z .

Transmissibility matrix

Ti− 1
2 ,j,l

=
∆y

∆x

h

µ
ki− 1

2 ,j,l
,

ki− 1
2 ,j

=
2

1
ki−1,j,l

+ 1
ki,j,l

.
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Problem Definition

Incompressible model
T p = q.

Properties of T

Eigenvalues
T p = λp

Condition number of a SPD matrix.

κ2(T ) =
λmax (T )

λmin(T )

q : sources or wells in the reservoir.

Peaceman well model
q = −Jwell (p− pwell )

Jwell is the well index, negative sign is a production well.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 5 / 25



POD

Proper Orthogonal Decomposition (POD)
POD: find an ’optimal’ basis Φ for a given data set (Markovinović et al. 2009
[5], Astrid et al. 2011 [6])

Φ = [φ1, φ2, ....φl ] ∈ Rn×l φi , basis functions.

Get the snapshots
X = [x1, x2, ...xm].

Compute R

R :=
1

m
XXT ≡ 1

m

m∑
i=1

xix
T
i .

Basis functions: eigenvectors of the maximal number (l) of eigenvalues
satisfying [7]: ∑l

j=1 λj∑m
j=1 λj

≤ α, 0 < α ≤ 1, (1)

with α close to 1 (eigenvalues are ordered from large to small with λ1 the
largest eigenvalue of R).

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 6 / 25



Deflation vectors

Recycling deflation (Clemens 2004, [8]).

Z = [x1, x2, xq−1],

x i ’s are solutions of the system.
Multigrid and multilevel (Tang 2009, [9]).
The matrices Z and ZT are the restriction and prolongation matrices of
multigrid methods.
Subdomain deflation (Vuik 1999,[10]).

Proposal

Use solution of the system with various well configurations as
deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal
Decomposition (POD).

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 7 / 25



Deflation vectors

Lemma 1. Let A ∈ Rn×n be a non-singular matrix, such that

Ax = b, (2)

and xi ,bi ∈ Rn, i = 1, ...,m, bi are linearly independent (l .i .) such that:

Axi = bi , (3)

The following equivalence holds

x =
m∑

i=1

cixi ⇔ b =
m∑

i=1

cibi . (4)

Proof ⇒ Substituting x from (4) into Ax = b, and using linearity of A and(3):

Ax =
m∑

i=1

Acixi = A(c1x1 + ...+ cmxm)

= Ac1x1 + ...+Acmxm = c1b1 + ...+ cmbm =
m∑

i=1

cibi . (5)

Similar proof for ⇐
Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 8 / 25



Deflation vectors

Lemma 2. If the the deflation matrix Z is constructed with a set of m vectors

Z =
[
x1 ... ... xm

]
,

such that x =
∑m

i=1 cixi , with xi l .i ., then the solution of system Ax = b is
achieved within one iteration of DCG.
Proof.
The relation between x̂ and x is given as:

x = Qb + PT x̂. (6)

For the first term Qb, taking b =
∑m

i=1 cibi we have:

Qb = ZE−1ZT

(
m∑

i=1

cibi

)
= Z(ZTAZ)−1ZT

(
m∑

i=1

ciAxi

)
= Lemma 1

= Z(ZTAZ)−1ZT (Ax1c1 + ...+Axmcm) = Z(ZTAZ)−1ZTAZc

= Zc = c1x1 + c2x2 + c3x3 + c4x4 + c5x5 =
m∑

i=1

cixi = x

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 9 / 25



Deflation vectors

Lemma 2 (second part).
For the second term of Equation (6), PT x̂, we compute x̂ from the deflated
system:

PAx̂ = Pb
APT x̂ = (I − AQ)b using APT = PA [4] and definition of P,

APT x̂ = b−AQb
APT x̂ = b−Ax = 0 taking Qb = x from above,

PT x̂ = 0 as A is invertible.

Then we have achieve the solution x in one step of DICCG.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 10 / 25



Numerical experiments

Case 1. Heterogeneous permeability.
The experiments were performed for single-phase flow, with the following
characteristics:

Figure : Model.

Grid size nx × ny grid cells, nx = ny = 64.

Permeability σ1 = 1mD, σ2 variable.

W1 = W2 = W3 = W4 = -1 bars.

W5 = +4 bars.

Neumann boundary conditions.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 11 / 25



Numerical experiments (Heterogeneous permeability)

Snapshots
z1: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z2: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z3: W3 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z4: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = b5 = +3 bars.
z5: W1 = W2 = W3 = W4 = -1 bars, W5 = b5 = +4 bars.

Results

σ2 (mD) 10−1 10−3 10−5 10−7

ICCG 90 131 65* 64*
DICCG4 1 1 1* 1*
DICCG5 1 500* 500* 500*

Table : Number of iterations for different contrast in the permeability of the layers
(σ1 = 1mD) for the ICCG and DICCG methods, tolerance of 10−11, snapshots 10−11.
DICCG4 is the method with 4 deflation vectors and DICCG5 is the method with 5
deflation vectors.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 12 / 25



Numerical experiments (Heterogeneous permeability), POD

Snapshots
z1: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z2: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z3: W3 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z4: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = b5 = +3 bars.

We use 4 snapshots and 2 POD basis vectors as deflation vectors.
Results

σ2 (mD) 10−1 10−3 10−5 10−7

ICCG 90 131 65* 64*
DICCG 1 1 1* 1*
DICCGPOD 1 1 1* 1*

Table : Table with the number of iterations for different contrast in the permeability
of the layers (σ1 = 1mD), for the ICCG, DICCG and DICCGPOD methods, tolerance
of solvers and snapshots 10−11.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 13 / 25



Numerical experiments (Heterogeneous permeability)

Condition number of a SPD matrix.

κ2(A) =
λmax (A)

λmin(A)

σ2 (mD) 10−1 10−3 10−5 10−7

κ(A) 2.6× 103 2.4×105 2.4× 107 2.4× 109

κ(M−1A) 206.7 8.3× 103 8.3× 105 8.3× 107

κeff (M−1PA) 83.27 6× 103 1× 106 6× 107

Table : Condition number for various permeability contrasts between the layers,
grid size of 32 x 32, σ1 = 1mD.

Relative error, e = ||x−xk ||2
||x||2 ≤ κ2(A)ε, x : true solution, xk : approximation.

Taking e = 10−7,

σ2 (mD) 10−1 10−3 10−5 10−7

tol = e
κ2(M−1A)

= 10−7

κ2(M−1A)
5× 10−9 1×10−10 1×10−12 1×10−14

tol = e
κeff (M−1PA)

= 10−7

κeff (M−1PA)
1× 10−8 2×10−10 1×10−12 2×10−14

Table : Tolerance needed for various permeability contrast between the layers, grid
size of 32 x 32, σ1 = 1mD, for an error of e = 10−7.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 14 / 25



Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

(a) 16 x 56 (b) 60 x 220

Figure : Permeability field, 16 x 56
and 60 x 220 grid cells.

Grid
size

16 x 56 30 x 110 46 x 166 60 x 220

Contrast
(×107)

1.04 2.52 2.6 2.8

Table : Contrast in permeability for different grid sizes
(σmax/σmin).

Condition num-
ber

value

κ(A) 2.2× 106

κ(M−1A) 377
κeff (M−1PA) 82.7

Table : Table with the condition number of the SPE10
model, grid size of 16 x 56.
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Numerical experiments (SPE 10)

SPE 10 model, 2nd layer
4 and 5 snapshots used as deflation vectors

Tol
(snap-
shots)

Method 16 x 56 30 x 110 46 x 166 60 x 220

ICCG 34 73 126 159

10−1 DICCG4 33 72 125 158
DICCG5 500* 500* 500* 500*

10−3 DICCG4 18 38 123 151
DICCG5 18 35 123 150

10−5 DICCG4 11 21 27 55
DICCG5 9 22 23 54

10−7 DICCG4 1 1 1 1
DICCG5 1 1 1 1

Table : Number of iterations for ICCG and DICCG, diverse tolerance for
the snapshots, different grid sizes. DICCG4 is computed with 4 deflation
vectors, DICCG5 with 5.
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Numerical experiments (SPE 10)

SPE 10 model, 2nd layer, POD
4 snapshots and 2 POD vectors used as deflation vectors

Tol Method 16 x 56 30 x 110 46 x 166 60 x 220

ICCG 34 73 126 159

10−1 DICCG 33 72 125 158
DICCG2POD 33 72 125 158

10−3 DICCG 18 38 123 151
DICCG2POD 21 40 123 153

10−5 DICCG 11 21 27 55
DICCG2POD 11 21 27 48

10−7 DICCG 1 1 1 1
DICCG2POD 1 1 1 1

Table : Table with the number of iterations for ICCG, DICCG and DICCGPOD , various
tolerance for the snapshots, various grid sizes.
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Numerical experiments (SPE 10)

SPE 10 model, 85 layers

Single-phase flow, grid size 60 x
220 x 85 grid cells.

Tol. Method Iterations
snapshots

ICCG 1029
10−2 DICCG4 1029

DICCG2POD 1029
10−5 DICCG4 878

DICCG2POD 872
10−8 DICCG4 546

DICCG2POD 475
10−11 DICCG4 1

DICCG2POD 1

Table : Number of iterations for ICCG and
DICCG, diverse tolerance for the snapshots.
DICCG4 is computed with 4 deflation vectors,
DICCG2POD with 2 basis vectors of POD.
Tolerance of the solvers 10−11
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Numerical experiments

SPE 10 model, 85 layers

Method Number or iterations
ICCG 1029
DICCG 1

Table : Number of iterations for the SPE10 benchmark (85 layers) for the ICCG
and DICCG methods, tolerance 10−11.
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Numerical experiments (SPE 10)

SPE 10 model, 85 layers

W1
(bars)

W2
(bars)

W3
(bars)

W4
(bars)

W5
(bars)

z1 -1 -1 -1 -1 4

z2 0 -1 -1 -1 3

z3 -1 0 -1 -1 3

z4 -1 -1 0 -1 3

z5 -1 -1 -1 0 3

z6 0 0 -1 -1 2

z7 -1 0 0 -1 2

z8 -1 -1 0 0 2

z9 0 -1 0 -1 2

z10 -1 0 -1 0 2

z11 0 -1 -1 0 2

z12 -1 0 0 0 1

z13 0 -1 0 0 1

z14 0 0 -1 0 1

z15 0 0 0 -1 1

Table : Values of the bhp for the wells.

Figure : Eigenvalues of the snapshot
correlation matrix R = XXT , 15 snapshots
used.

ICCG 1029
DICCG15 2000
DICCG4POD 2

Table : Table with the number of iterations for
different contrast in the permeability of the
layers for the ICCG, DICCG15 and DICCG4POD

methods, tolerance of solvers and snapshots
10−11.

Vuik, Diaz, Jansen (TU Delft) Deflation EUREKA, 2016 20 / 25



Numerical experiments (Compressible problem)

Compressible problem, heterogeneous layered problem, contrast
between layers 10

Figure : Heterogeneous permeability.
Figure : Solution, well fluxes
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Numerical experiments (Compressible problem)

Compressible problem, heterogeneous layered problem, contrast
between layers 10
Snapshots: 5 first time steps.
Deflation vectors: 3 POD basis vectors.

Figure : Number of iterations ICCG
method.

Figure : Number of iterations ICCG
and DICCG methods.
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Conclusions

Solution is reached in 1 iteration for DICCG method.

Number of iterations for the DICCG method does not depend on the
contrast between the coefficients (Heterogeneous permeability
example).

Number of iterations for the DICCG method does not depend on the
grid size (SPE 10 example).

The choice of deflation vectors is important for a good performance
of DICCG.
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