Modern Computing

October 7, 2014 Kees Vuik

Taking the Lead with Computational Speed High performance computer models in Dutch business

Affiliation

- Professor of Numerical Analysis http://ta.twi.tudelft.nl/users/vuik/
- Scientific Director of 3TU.AMI Applied Mathematics Institute http://www.3tu.nl/ami/en/
- Director of Delft Centre for Computational Science and Engineering http://www.cse.tudelft.nl/

Contents

- Case studies
- Smart algorithms
- Future computers
- Discussion

Seismic simulations

On land

Solution 2005

Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput., 27, pp. 1471-1492, 2006

ISI Emerging Research Front Paper, 2010

Solution 2015

A.H. Sheikh and D. Lahaye and C. Vuik

On the convergence of shifted Laplace preconditioner combined with multilevel deflation Numerical Linear Algebra with Applications, 20, pp. 645-662, 2013

Geomechanic simulation

Challenge the future 7

Parallel solver

Fig. 5 The parallel speedup obtained for the two models. The curve labeled "Precon" depicts the parallel speedup of the preconditioner. The curve labeled "Solve" depicts the parallel speedup of the solver,

Parallel solver

Solver	# Threads	Precon [s]	Solve [s]	# Iter
PARDISO	8	200	25	1
Original	1	320	130	140
New	1	140	75	134
	2	84	29	80
	4	43	29	111
	8	23	21	113

F.J. Lingen and P.G. Bonnier and R.B.J. Brinkgreve and M.B. van Gijzen and C. Vuik A parallel linear solver exploiting the physical properties of the underlying mechanical problem Computational Geosciences, 1, pp. 1-1, 2014

Smart algorithms

- Flexible
- Adaptive
- Robust
- Parallel
- Accuracy
- Physics-based

Discretization methods

- FDM
- FEM
- FVM
- DG
- isoGEO FEM

Discretization method

Discretization method

Seismic solver

- Bad result for standard solvers
- Preconditioner based on damped equations
- Multigrid suitable for damped equations
- Near-null space remains a problem
- Deflation solves this problem

Geomechanic solver

- Fast sequential solver
- Standard parallelization fails
- First physics-based decomposition
- Domain decomposition
- Deflation
- Fast multi-core implementation

Future computers

- Slow increase in speed
- Double / single precision
- Parallel coarse / fine
- Memory bound
- Data movement
- Power requirements
- Heat problem

Multi core

GPU

FPGA

Parallel coarse / fine

Processor Parallelism

Discussion

Challenge the future 21