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The Helmholtz equation

The Helmholtz equation without damping

−∆u(x, y) − k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,
k(x, y) is the wave number,
g(x, y) is the point source function and
Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)
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Application: geophysical survey

hard Marmousi Model
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Problem description
• Second order Finite Difference stencil:
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• Linear system Au = g: properties
Sparse & complex valued
Symmetric & Indefinite for large k

• For high resolution a very fine grid is required: 30 − 60 gridpoints
per wavelength (or ≈ 5 − 10 × k) → A is extremely large!

• Is traditionally solved by a Krylov subspace method, which
exploits the sparsity.
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Survey of solution methods
Special Krylov methods

• COCG van der Vorst and Melissen, 1990

• QMR Freund and Nachtigal, 1991

General purpose Krylov methods

• CGNR Paige and Saunders, 1975

• Short recurrences
Bi-CGSTAB van der Vorst, 1992

IDR(s) Van Gijzen and Sonneveld, 2008

• Minimal residual
GMRES Saad and Schultz, 1986

GCR Eisenstat, Elman and Schultz, 1983

GMRESR van der Vorst and Vuik, 1994
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Preconditioning

Equivalent linear system M−1
1 AM−1

2 x̃ = b̃, where M = M1 · M2 is the
preconditioning matrix and

x̃ = M2x, b̃ = M1b.

Requirements for a preconditioner

• better spectral properties of M−1A

• cheap to perform M−1r.

Spectrum of A is {µi−k2}, with k is constant and µi are the eigenvalues

of the Laplace operator. Note µ1 − k2 may be negative.



May 11th, 2012 8

Delft Institute of Applied Mathematics

Preconditioning

ILU Meijerink and van der Vorst, 1977

ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997

Multigrid Lahaye, 2001

Elman, Ernst and O’ Leary, 2001

AILU Gander and Nataf, 2001

analytic parabolic factorization

ILU-SV Plessix and Mulder, 2003

separation of variables
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Preconditioning

Laplace operator Bayliss and Turkel, 1983

Definite Helmholtz Laird, 2000

Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner

M ≡ −∆ − (β1 − iβ2)k
2, β1, β2 ∈ R, and β1 ≤ 0.

Condition β1 ≤ 0 is used to ensure that M is a (semi) definite operator.

→ β1, β2 = 0 : Bayliss and Turkel

→ β1 = 1, β2 = 0 : Laird

→ β1 = −1, β2 = 0.5 : Y.A. Erlangga, C. Vuik and C.W.Oosterlee
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Application: geophysical survey

hard Marmousi Model
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Numerical experiments

Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same
method as the Helmholtz operator.

k ILU(0.01) M0 M1 Mi

5 9 13 13 13

10 25 29 28 22

15 47 114 45 26

20 82 354 85 34

30 139 > 1000 150 52
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Eigenvalues for Complex preco k = 100

20 smallest eigenvalues
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Eigenvalues for Complex preco k = 100

50 smallest eigenvalues

75 grid points 150 grid points
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Eigenvalues for Complex preco k = 100

spectrum is independent of the grid size

75 grid points 150 grid points
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Inner iteration

Possible solvers for solution of Mz = r:

• ILU approximation of M

• inner iteration with ILU as preconditioner

• Multigrid

Multigrid components
- geometric multigrid
- Gauss-Seidel with red-black ordering
- matrix dependent interpolation, full weighting restriction

- Galerkin coarse grid approximation
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Inner iteration
• geometric multigrid

• ω-JAC smoother

• bilinear interpolation, restriction operator full weighting

• Galerkin coarse grid approximation

• F(1,1)-cycle

• M−1 is approximated by one multigrid iteration
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Numerical results for a wedge problem

k2 10 20 40 50 100

grid 322 642 1282 1922 3842

No-Prec 201(0.56) 1028(12) 5170(316) – –

ILU(A,0) 55(0.36) 348(9) 1484(131) 2344(498) –

ILU(A,1) 26(0.14) 126(4) 577(62) 894(207) –

ILU(M ,0) 57(0.29) 213(8) 1289(122) 2072(451) –

ILU(M ,1) 28(0.28) 116(4) 443(48) 763(191) 2021(1875)

MG(V(1,1)) 13(0.21) 38(3) 94(28) 115(82) 252(850)
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Spectrum of shifted Laplacian preco

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since L and M are SPD we have the following eigenpairs

Lvj = λjMvj , where, λj ∈ R
+

The eigenvalues σj of the preconditioned matrix satisfy

(L − z1M)vj = σj(L − z2M)vj .

Theorem 1
Provided that z2 6= λj , the relation

σj =
λj − z1

λj − z2
holds.
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Spectrum of shifted Laplacian preco

Theorem 2
If β2 = 0, the eigenvalues σr + iσi are located on the straight line in the
complex plane given by

β1σr − (α1 − α2)σi = β1.

Theorem 3
If β2 6= 0, the eigenvalues σr + iσi are on the circle in the complex
plane with center c and radius R:

c =
z1 − z̄2

z2 − z̄2
, R =

∣

∣

∣

∣

z2 − z1

z2 − z̄2

∣

∣

∣

∣

.

Note that if β1β2 > 0 the origin is not enclosed in the circle.
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Spectrum with inner iteration
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Sigsbee model

x−direction (m)

de
pt

h 
(m

)

0 0.5 1 1.5 2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 1500

2000

2500

3000

3500

4000

4500



May 11th, 2012 22

Delft Institute of Applied Mathematics

Sigsbee model

dx = dz = 22.86 m; D = 24369 × 9144 m2; grid points 1067 × 401.

Bi-CGSTAB 5 Hz 10 Hz

CPU (sec) Iter CPU (sec) Iter

NO preco 3128 16549 1816 9673

With preco 86 48 92 58
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Second Level Preconditioning
• ILU and variants

• From Laplace to complex Shifted Laplace Preconditioner (2005)

• Shifted Laplace Preconditioner (SLP)

M := −∆u − (β1 − ιβ2)k
2
u

• Results shows: (β1, β2) = (1, 0.5) is the shift of choice

• What is the effect of SLP?
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Shifted Laplace Preconditioner
• Introduces damping, Multi-grid approximation is possible

• The modulus of all eigenvalues of the preconditioned operator is
bounded by 1

• Small eigenvalues move to zero, as k increases.

Spectrum of M−1(1, 0.5)A for

k = 30 and k = 120
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Some Results at a Glance

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 10 17 28 44 70 14

n = 64 10 17 28 36 45 163

n = 96 10 17 27 35 43 97

n = 128 10 17 27 35 43 85

n = 160 10 17 27 35 43 82

n = 320 10 17 27 35 42 80

Number of iterations depends linearly on k.
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Deflation improves the convergence

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Erlangga and Nabben, 2008, seems to be independent of k.

with / without deflation.
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Erlangga and Nabben algorithm

Setting up:

For k = 1, set A(1) = A, M (1) = M , construct Z(1,2), λ
(k)
max = 1, ∀ k.

From above, Â(1) = A(1)M (1)−1

and P
(1)
λmax

= I − Q̂(1)Â(1) + Q̂(1) with

Q̂(1) = Z(1,2)Â(2)−1

Z(1,2)T

For k = 2, . . . , m, construct Z(k−1,k) and compute

A(k) = Z(k−1,k)T

A(k−1)Z(k−1,k), M (k) = Z(k−1,k)T

M (k−1)Z(k−1,k)

and

P
(k)
λmax

= I−Z(k,k+1)Â(k+1)−1

Z(k,k+1)T
(

Â(k) − I
)

with Â(k) = A(k)M (k)−1
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Inside Iterations
Solve: A(2)M (2)−1

v
(2)
R = (vR)(2) with Krylov

v
(2)
A = A(2)v(2);

s(2) = M (2)−1

v
(2)
A ;

t(2) = s(2) − λ
(2)
maxv(2);

Restriction: (vR)(3) = Z(2,3)T

t(2)

If k = m

v
(m)
R = A(m)−1

(v′R)(m)

else

Solve: A(3)M (3)−1

v
(3)
R = (vR)(3) with Krylov

. . .

Interpolation: v
(2)
I = Z(2,3)v

(3)
R

q(2) = v(2) − v
(2)
I

w(2) = M (2)−1

q(2)

p(2) = A(2)w(2)
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Deflation: or tw o-grid method

For any deflation subspace matrix

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rankZ = r

P = I − AQ, with Q = ZE−1ZT and E = ZT AZ

Solve PAu = Pg preconditioned by M−1 or M−1PA = M−1Pg

For e.g. say,

spec (A) = {λ1, λ2, λ3, ..., λn}

and if Z is the matrix with columns the r eigenvectors then

spec (PA) = {0, ..., 0, λr+1, ...λn}



May 11th, 2012 30

Delft Institute of Applied Mathematics

Deflation

We use multi-grid inter-grid transfer operator (Prolongat ion) as deflation matrix.

Setting Z = I2h
h and ZT = Ih

2h then

P = I − AQ, with Q = I2h
h E−1Ih

2h and E = Ih
2hAI2h

h

where
P can be interpreted as a coarse grid correction and
Q as the coarse grid operator
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Fourier Analysis

Dirichlet boundary conditions for analysis.
With above deflation,

spec (PM−1A) = f(β1, β2, k, h)

is a complex valued function.
Setting kh = 0.625,

• Spectrum of PM−1A with shifts (1, 0.5) is clustered around 1 with
a few outliers.

• Spectrum remains almost the same, when the imaginary shift is
varied from 0.5 to 1.
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Fourier Analysis

Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Analysis shows that an increase in the imaginary shift does not change
the spectrum.

(β1, β2) = (1, 0.5) (β1, β2) = (1, 1)
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Numerical results

Sommerfeld boundary conditions are used for test problem.

What is the effect of an increase in the imaginary shift in SLP?

Constant wavenumber problem Wedge problem
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Numerical results

Number of GMRES iterations with/without deflation. Shifts in the
preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80
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Numerical results

Number of GMRES iterations with/without deflation to solve a Wedge
problem. Shifts in the preconditioner are (1, 0.5)

Grid freq = 10 freq = 20 freq = 30 freq = 40 freq = 50

74× 124 7/33 20/60 79/95 267/156 490/292

148× 248 5/33 9/57 17/83 42/112 105/144

232× 386 5/33 7/57 10/81 25/108 18/129

300× 500 4/33 6/57 8/81 12/105 18/129

374× 624 4/33 5/57 7/80 9/104 13/128
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Numerical results

•
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Numerical results
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Numerical results

Number of GMRES outer-iterations in multilevel algorithm.
(β1, β2) = (1, 0.5) kh = .3125 or 20 gp/wl
and MG Vcycle(1,1) for SLP

Grid k = 10 k = 20 k = 40 k = 80 k = 160

MLMGV(4,2,1) 9 11 16 27 100+

MLMGV(6,2,1) 9 10 14 21 47

MLMGV(8,2,1) 9 10 13 20 38

MLMGV(8,3,2) 9 10 13 19 37
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Results

Petsc solve-time in Seconds; a Two-level solver.

Solver 20 40 80 120 160 200

SLP 0.01(23) 0.24(54) 2.62(113) 11.60(168) 33.59(222) 83.67(274)

Def/SLP 0.03(10) 0.14(14) 0.82(23) 2.92(37) 8.98(61) 23.13(87)

SLP : GCR preconditioned with SLP M(1, 1).
Def/SLP: Deflated and preconditioned GCR.

Grid resolution is such that there are 10 grid points per wavelength.
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Results

Petsc time and Krylov outer-iterations in multilevel algorithm.
(β1, β2) = (1, 1)

kh = .625 or 10 gp/wl
MLMGV is Multilevel with VCycle(1,1), MLMGF is Multilevel with
FCycle(1,1)

- k = 10 k = 20 k = 40 k = 80 k = 120

MLMGV(8,2,1) 16(1.3) 27(2.8) 58(7.3) 116(38.7) 177(76.8)

MLMGF(8,2,1) 10(0.9) 11(4.3) 16(12.9) 28(39.2) 41(60.5)



May 11th, 2012 42

Delft Institute of Applied Mathematics

Fourier Analysis
Spectrum of A, M−1A and PM−1A (from left to right) in bar-graph.
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Conclusions
• The proposed preconditioner (shifted Laplacian + multi-grid) is

independent of the grid size and linearly dependent of k.

• With physical damping the proposed preconditioner is also
independent of k.

• Without deflation, when imaginary shift is increased in SLP,
spectrum remains bounded above 1, but lower part moves to zero.

• Flexibility to increase imaginary shift, when deflation is combined
with SLP.

• Further research Multilevel scheme, applying similarly for coarse
problem in deflation. Questions: gain in CPU time? why not
scalable? ...
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