

### A fast and robust solver for multi-phase flow

### Kees Vuik and Jok Tang

Delft University of Technology Delft Institute of Applied Mathematics



Modelling and Measuring of Multi-phase Flow Phenomena in Micro-fluidic and Thin-film Systems Lorentz Centre, Leiden University June 19, 2008

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 00000        |                                   |                    |                            |                       |             |
| Introduction |                                   |                    |                            |                       |             |
|              |                                   |                    |                            |                       |             |

### Some history

### Developments of multi-phase flow

- Mach-uniform numerical methods
- Numerical methods for cavitation flows
- A mass conserving level set method for bubbly flows
- Fast solvers for bubbly flows
- Grid computing for multi-phase flow

#### Typical issues for solution of the linear systems

- Iterative methods for the coupled Navier-Stokes equations
- Iterative methods for methods for problems with discontinuos coefficients

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 00000        |                                   |                    |                            |                       |             |
| Introduction |                                   |                    |                            |                       |             |
|              |                                   |                    |                            |                       |             |

### Some history

### Developments of multi-phase flow

- Mach-uniform numerical methods
- Numerical methods for cavitation flows
- A mass conserving level set method for bubbly flows
- Fast solvers for bubbly flows
- Grid computing for multi-phase flow

### Typical issues for solution of the linear systems

- Iterative methods for the coupled Navier-Stokes equations
- Iterative methods for methods for problems with discontinuos coefficients

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 00000        |                                   |                    |                            |                       |             |
| Introduction |                                   |                    |                            |                       |             |

# Bubbly Flow Problems

## Simulation



| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000       | 000                               | 000000             | 000                        | 000000                | 00          |
| Introduction |                                   |                    |                            |                       |             |

## **Bubbly Flow Problems**



### Background

- Simulation of flows with bubbles and droplets
- Numerical models are used
- Flow governed by the Navier-Stokes equations with unknowns *p* and *u*:

 $\begin{cases} \frac{\partial u}{\partial t} + u \cdot \nabla u + \frac{1}{\rho} \nabla p = \frac{1}{\rho} \nabla \cdot \mu \left( \nabla u + \nabla u^T \right) + g \\ \nabla \cdot u = 0 \end{cases}$ 

Solution using operator-splitting methods

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000       | 000                               | 000000             | 000                        | 000000                | 00          |
| Introduction |                                   |                    |                            |                       |             |

## **Bubbly Flow Problems**



### Background

- Simulation of flows with bubbles and droplets
- Numerical models are used
- Flow governed by the Navier-Stokes equations with unknowns *p* and *u*:

$$\begin{cases} \frac{\partial u}{\partial t} + u \cdot \nabla u + \frac{1}{\rho} \nabla p = \frac{1}{\rho} \nabla \cdot \mu \left( \nabla u + \nabla u^T \right) + g \\ \nabla \cdot u = 0 \end{cases}$$

Solution using operator-splitting methods

| Introduction<br>○○○●○○ | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|------------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| Introduction           |                                   |                    |                            |                       |             |
| Linear                 | System                            |                    |                            |                       |             |

Most Time-Consuming Part in Operator-Splitting Methods

Solve the singular but consistent linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

where A is large, sparse, SPSD, ill-conditioned

Origin of Linear System

Poisson equation with a discontinuous density  $\rho$ :

$$\operatorname{div}\left(\frac{1}{\rho}\nabla p\right) = f$$

with Neumann boundary conditions

| Introduction<br>○○○●○○ | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|------------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| Introduction           |                                   |                    |                            |                       |             |
| Linear                 | System                            |                    |                            |                       |             |

Most Time-Consuming Part in Operator-Splitting Methods

Solve the singular but consistent linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

where A is large, sparse, SPSD, ill-conditioned

#### Origin of Linear System

Poisson equation with a discontinuous density  $\rho$ :

$$\operatorname{div}\left(\frac{1}{\rho}\nabla p\right) = f$$

with Neumann boundary conditions

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000       | 000                               | 000000             | 000                        | 000000                | 00          |
| Introduction |                                   |                    |                            |                       |             |

## **Standard Iterative Methods**

Preconditioned Conjugate Gradient Method (PCG)

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where *M* is a preconditioner

#### Bottleneck

The spectrum of  $M^{-1}A$  consists of small eigenvalues due to presence of bubbles

#### Consequence

 $\tilde{\kappa}(M^{-1}A)$  is large  $\rightarrow$  Slow convergence of the iterative process

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000       | 000                               | 000000             | 000                        | 000000                | 00          |
| Introduction |                                   |                    |                            |                       |             |

## **Standard Iterative Methods**

Preconditioned Conjugate Gradient Method (PCG)

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where *M* is a preconditioner

### Bottleneck

The spectrum of  $M^{-1}A$  consists of small eigenvalues due to presence of bubbles

### Consequence

 $\tilde{\kappa}(M^{-1}A)$  is large  $\rightarrow$  Slow convergence of the iterative process

| Introduction<br>00000● | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|------------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| Introduction           |                                   |                    |                            |                       |             |
| Aim of                 | Research                          |                    |                            |                       |             |

### Our Goal

Improve PCG to solve the linear system Ax = b efficiently



| Introduction    | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|-----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000          | 000                               | 000000             | 000                        | 000000                | 00          |
| Acceleration of | f Iterative Methods               |                    |                            |                       |             |

## Second-level Preconditioners

#### Idea

#### Incorporate a second-level preconditioner in the PCG method

#### Possibilities

- Deflation preconditioners
- Multigrid preconditioners
- Domain decomposition preconditioners

<sup>&</sup>lt;sup>1</sup>R. NABBEN AND C. VUIK, SIAM J. Numer. Anal., 42, pp. 1631–1647, 2004

<sup>&</sup>lt;sup>2</sup>R. NABBEN AND C. VUIK, SIAM J. Sci. Comput., **27**, pp. 1742–1759, 2006.

<sup>&</sup>lt;sup>°</sup>R. NABBEN AND C. VUIK, Num. Lin. Alg. Appl., 4, pp. 355–372, 2008

<sup>&</sup>lt;sup>4</sup> J.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Report 07-04, 2007. (submitted)

<sup>- &</sup>lt;sup>4</sup> J.M. Tang, S.P. MacLachlan, R. Nabben and C. Vuik , Report 08-05, 2006. (sul@nikted) きょくきょ 🤰 🥥 Q C

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |  |
|----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|--|
| 000000         | •00                               | 000000             | 000                        | 000000                | 00          |  |  |  |  |
| Acceleration o | Acceleration of Iterative Methods |                    |                            |                       |             |  |  |  |  |

## Second-level Preconditioners

#### Idea

Incorporate a second-level preconditioner in the PCG method

### Possibilities

- Deflation preconditioners
- Multigrid preconditioners
- Domain decomposition preconditioners

<sup>&</sup>lt;sup>1</sup>R. NABBEN AND C. VUIK, SIAM J. Numer. Anal., 42, pp. 1631–1647, 2004.

<sup>&</sup>lt;sup>2</sup>R. NABBEN AND C. VUIK, SIAM J. Sci. Comput., **27**, pp. 1742–1759, 2006.

<sup>&</sup>lt;sup>3</sup>R. NABBEN AND C. VUIK, Num. Lin. Alg. Appl., **4**, pp. 355–372, 2008.

<sup>&</sup>lt;sup>4</sup>J.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Report 07-04, 2007. (submitted)

<sup>&</sup>lt;sup>4</sup> J.M. TANG, S.P. MACLACHLAN, R. NABBEN AND C. VUIK , Report 08-05, 2008. (submitted) 🗄 🗰 👘 🗮 🛷 🤍 💎

| Introduction   | Acceleration of Iterative Methods<br>○●○ | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |  |
|----------------|------------------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|--|
| Acceleration o | Acceleration of Iterative Methods        |                    |                            |                       |             |  |  |  |  |

### Idea of Deflation

### Deflated PCG (DPCG)

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where *M* is a preconditioner and *P* is the deflation matrix

#### ldea

P projects the small eigenvalues to exactly zero

#### Consequence

 $\tilde{\kappa}(M^{-1}PA)$  is small  $\rightarrow$  Faster convergence of the iterative process

| Introduction   | Acceleration of Iterative Methods | <b>Deflation Subspace</b> | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|---------------------------|----------------------------|-----------------------|-------------|
| Acceleration o | of Iterative Methods              |                           |                            |                       |             |

### Idea of Deflation

### Deflated PCG (DPCG)

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where *M* is a preconditioner and *P* is the deflation matrix

#### Idea

P projects the small eigenvalues to exactly zero

### Consequence

 $\tilde{\kappa}(M^{-1}PA)$  is small  $\rightarrow$  Faster convergence of the iterative process

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|                | 000                               |                    |                            |                       |             |
| Acceleration o | of Iterative Methods              |                    |                            |                       |             |

## **Definition of Deflation Matrix**

#### Notation

$$P := I - AZE^{-1}Z^T, \quad E := Z^T AZ, \quad Z \in \mathbb{R}^{n \times r}, \quad r \ll n$$

where Z is the deflation subspace matrix consisting of deflation vectors

#### Notes

• Space spanned by the columns of Z is the space to be projected out  $\rightarrow$  Success of deflation depends on the choice of Z

• Coarse matrix E has dimensions  $r \times r \rightarrow E^{-1}$  is easy to compute

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|                | 000                               |                    |                            |                       |             |
| Acceleration o | of Iterative Methods              |                    |                            |                       |             |

## **Definition of Deflation Matrix**

#### Notation

$$P := I - AZE^{-1}Z^T$$
,  $E := Z^T AZ$ ,  $Z \in \mathbb{R}^{n \times r}$ ,  $r \ll n$ 

where Z is the deflation subspace matrix consisting of deflation vectors

### Notes

- Space spanned by the columns of Z is the space to be projected out  $\to$  Success of deflation depends on the choice of Z
- Coarse matrix *E* has dimensions  $r \times r \rightarrow E^{-1}$  is easy to compute

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|                |                                   | 00000              |                            |                       |             |
| Deflation Subs | space                             |                    |                            |                       |             |

## **Choices of Deflation Subspace**

### Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of  $M^{-1}A$ 

Problem Ideal Choice of Z

These eigenvectors are too expensive to compute in practice

| Introduction       | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |
|--------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|
|                    |                                   | 00000              |                            |                       |             |  |  |  |
| Deflation Subspace |                                   |                    |                            |                       |             |  |  |  |
|                    |                                   |                    |                            |                       |             |  |  |  |

### Choices of Deflation Subspace

### Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of  $M^{-1}A$ 

### Problem Ideal Choice of Z

These eigenvectors are too expensive to compute in practice

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000         | 000                               | 00000              | 000                        | 000000                | 00          |
| Deflation Subs | space                             |                    |                            |                       |             |

### Choices of Deflation Subspace

### Alternatives

- Approximated Eigenvector Deflation: YEREMIN ET AL. (1995), PADIY ET AL. (2000), SAAD ET AL. (2000), WAISMAN (2005)
- Solution / Recycling Deflation: CLEMENS ET AL. (2004), PARKS ET AL. (2006)
- Subdomain Deflation: Nicolaides (1987), Mansfield (1990,1991), VUIK, NABBEN, TANG ET AL. (1999 - ...)
- Levelset Deflation: TANG, VUIK (2007)

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace<br>○○●○○○ | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|------------------------------|----------------------------|-----------------------|-------------|
| Deflation Subs | space                             |                              |                            |                       |             |

# **Subdomain Deflation**



Ω

Deflation subspace matrix

$$\begin{aligned} Z &= [z_1 \ z_2 \ \cdots \ z_r] \text{ consists of } \\ (z_j)_i &= \left\{ \begin{array}{cc} 0, & x_i \in \Omega \setminus \bar{\Omega}_j \\ 1, & x_i \in \Omega_j \end{array} \right. \end{aligned}$$

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|
|              |                                   | 000000             |                            |                       |             |  |  |
|              |                                   |                    |                            |                       |             |  |  |

# 1-D Example of Subdomain Deflation



### Example

Take 
$$n = 6$$
,  $r = 2$  and  $\Omega = \{\Omega_1, \Omega_2\}$ :  

$$Z = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$

| Introduction   | Acceleration of Iterative Methods | Deflation Subspace<br>0000●0 | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|----------------|-----------------------------------|------------------------------|----------------------------|-----------------------|-------------|
| Deflation Subs | space                             |                              |                            |                       |             |

### Subdomain Deflation

### Advantages of Subdomain Deflation Vectors

- Easy approach
- Sparse structure
- Fixed at each time step
- Independent of geometry
- Approximate unfavorable eigenvectors
- Straightforward to parallellize

| Introduction       | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |
|--------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|
| 000000             | 000                               | 000000             | 000                        | 000000                | 00          |  |  |  |
| Deflation Subspace |                                   |                    |                            |                       |             |  |  |  |

### Alternatives of Subdomain Deflation

### **Density-related Deflation Vectors**

Subdomains can also be chosen corresponding to bubbles

### Observation

This does not lead to significant improvements compared to the original method (for sufficiently large number of subdomains)

#### Optimal Choice

Optimal choice of the number of deflation vectors depends on  $E^{-1}$ . Rule of thumb:

 $r \approx \sqrt{n}$ 

| 000000             | 000 | 00000 | 000 | 000000 | 00 |  |  |
|--------------------|-----|-------|-----|--------|----|--|--|
| Deflation Subspace |     |       |     |        |    |  |  |

### Alternatives of Subdomain Deflation

### **Density-related Deflation Vectors**

Subdomains can also be chosen corresponding to bubbles

#### Observation

This does not lead to significant improvements compared to the original method (for sufficiently large number of subdomains)

### **Optimal Choice**

Optimal choice of the number of deflation vectors depends on  $E^{-1}$ . Rule of thumb:

 $r \approx \sqrt{n}$ 

| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows<br>●○○ | Numerical Experiments | Conclusions |
|---------------|-----------------------------------|--------------------|-----------------------------------|-----------------------|-------------|
| Deflation and | Bubbly Flows                      |                    |                                   |                       |             |

# Theory of Subdomain Deflation

### Known in Literature

### Deflation method works well for linear systems with

- invertible matrices
- fixed density fields

#### Difficulties in Applications of Bubbly Flows

Can the deflation method deal with

- singular matrices?
- varying density fields?

| Introduction               | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |
|----------------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|
| 000000                     | 000                               | 000000             | 000                        | 000000                | 00          |  |  |  |
| Deflation and Bubbly Flows |                                   |                    |                            |                       |             |  |  |  |

## Theory of Subdomain Deflation

### Known in Literature

Deflation method works well for linear systems with

- invertible matrices
- fixed density fields

### Difficulties in Applications of Bubbly Flows

Can the deflation method deal with

- singular matrices?
- varying density fields?

| Introduction    | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|-----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| 000000          | 000                               | 000000             | 000                        | 000000                | 00          |
| Deflation and I | Bubbly Flows                      |                    |                            |                       |             |

## **Deflation and Singular Systems**

### Problem

 $E^{-1}$  does not exist, since coarse matrix  $E := Z^T A Z$  is singular

### Solutions

- Variant 1: Delete one column of Z
- Variant 2: Force invertibility of A
- Variant 3: Solve systems with E iteratively

#### Which is the best?

All variants perform the same in theory and have the same original convergence properties

<sup>&</sup>lt;sup>1</sup>J.M. TANG AND C. VUIK, JCAM, **206**, pp. 603–614, 2007. <sup>2</sup>J.M. TANG AND C. VUIK, ETNA, **26**, pd. 330–349, 2007.

| Introduction    | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|-----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|                 |                                   |                    | 000                        |                       |             |
| Deflation and I | Bubbly Flows                      |                    |                            |                       |             |

## **Deflation and Singular Systems**

#### Problem

 $E^{-1}$  does not exist, since coarse matrix  $E := Z^T A Z$  is singular

#### Solutions

- Variant 1: Delete one column of Z
- Variant 2: Force invertibility of A
- Variant 3: Solve systems with E iteratively

### Which is the best?

All variants perform the same in theory and have the same original convergence properties

<sup>&</sup>lt;sup>1</sup>J.M. TANG AND C. VUIK, JCAM, **206**, pp. 603–614, 2007.

<sup>&</sup>lt;sup>2</sup>J.M. TANG AND C. VUIK, ETNA, **26**, pp. 330–349, 2007.

| Introduction    | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |  |
|-----------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|--|
|                 |                                   |                    | 000                        |                       |             |  |  |  |  |
| Deflation and I | Deflation and Bubbly Flows        |                    |                            |                       |             |  |  |  |  |

## **Deflation and Varying Density Fields**

#### Problem

Subdomains of Z are fixed, whereas the density fields can vary

#### Solution

Performance of DPCG hardly depends on the value of the jumps and geometry of density fields

・ロト・(型ト・(ヨト・(ヨト・))
 ・

| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |  |  |
|---------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|--|--|
| 000000        | 000                               | 000000             | 660                        | 000000                | 00          |  |  |  |  |
| Deflation and | Deflation and Bubbly Flows        |                    |                            |                       |             |  |  |  |  |

## **Deflation and Varying Density Fields**

#### Problem

Subdomains of Z are fixed, whereas the density fields can vary

#### Solution

Performance of DPCG hardly depends on the value of the jumps and geometry of density fields

| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|---------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|               |                                   |                    |                            | 00000                 |             |
| Numerical Exp | periments                         |                    |                            |                       |             |

## Simulations

### **Problem Setting**

- Density jump  $\rho_{\rm water}/\rho_{\rm air} = 1.000$
- Finite differences on a uniform Cartesian grid
- Grid sizes  $n = 100^3 = 1.000.000$
- Comparison of PCG and DPCG with Incomplete Cholesky (IC) preconditioner
- Termination criterion  $||r_j||/||r_0|| < 10^{-10}$

| Introduction          | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |  |  |
|-----------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|--|--|
|                       |                                   |                    |                            | 00000                 |             |  |  |
| Numerical Experiments |                                   |                    |                            |                       |             |  |  |

# Simulation 1: Rising Bubble in Water

### Plots of Simulation 1



(a) t = 0

(b) *t* = 50

(c) t = 100



| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|---------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| Numerical Exp | periments                         |                    |                            |                       |             |
| Results       | S                                 |                    |                            |                       |             |

### Results for PCG and DPCG



| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|---------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
| Numerical Exp | eriments                          |                    |                            |                       |             |

# Simulation 2: Falling Droplet in Air

### Plots of Simulation 2



(a) t = 0

(b) *t* = 50

(c) *t* = 100



| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments<br>0000●0 | Conclusions |
|---------------|-----------------------------------|--------------------|----------------------------|---------------------------------|-------------|
| Numerical Exp | periments                         |                    |                            |                                 |             |
| Results       | S                                 |                    |                            |                                 |             |

### Results for PCG and DPCG



| Introduction  | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions |
|---------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------|
|               |                                   |                    |                            | 00000                 |             |
| Numerical Exp | periments                         |                    |                            |                       |             |

## Discussion of the Results

### Advantages of DPCG

- Performance is much better compared to PCG
- Depends hardly on the geometry of the problem
- Extremely robust in both simulations

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | <b>Deflation and Bubbly Flows</b> | Numerical Experiments | Conclusions<br>●○ |  |  |  |  |
|--------------|-----------------------------------|--------------------|-----------------------------------|-----------------------|-------------------|--|--|--|--|
| Conclusions  |                                   |                    |                                   |                       |                   |  |  |  |  |
| Conclusions  |                                   |                    |                                   |                       |                   |  |  |  |  |

### **Known Result**

DPCG works well for problems with invertible matrices and fixed density fields

### New Results

DPCG can also be applied to problems with singular matrices

Performance of DPCG hardly depends on the density fields

#### Main Conclusion

Simulation of bubbly flows can be accelerated and much more efficient using DPCG

| Introduction | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions<br>●O |  |  |  |  |
|--------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------------|--|--|--|--|
| Conclusions  |                                   |                    |                            |                       |                   |  |  |  |  |
| Conclusions  |                                   |                    |                            |                       |                   |  |  |  |  |

### **Known Result**

DPCG works well for problems with invertible matrices and fixed density fields

### New Results

- DPCG can also be applied to problems with singular matrices
- Performance of DPCG hardly depends on the density fields

### Main Conclusion

Simulation of bubbly flows can be accelerated and much more efficient using DPCG

| Introduction     | Acceleration of Iterative Methods | Deflation Subspace | Deflation and Bubbly Flows | Numerical Experiments | Conclusions<br>○● |  |  |  |
|------------------|-----------------------------------|--------------------|----------------------------|-----------------------|-------------------|--|--|--|
| Conclusions      |                                   |                    |                            |                       |                   |  |  |  |
| Current Research |                                   |                    |                            |                       |                   |  |  |  |

### Current Research

- Comparison of various two-level PCG methods applied to bubbly flows has been carried out
- Parallelization of deflation method

<sup>1</sup> S.P. MacLachlan, J.M. Tang and C. Vuik , Report 08-01, 2008. (submitted) 🗤 🖅 🗸 🗄 😽 🚊 🔊 🧟 🖓