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1. Introduction

The Helmholtz problem is defined as follows

− ∂xxu − ∂yyu − z1k
2(x, y)u = f, in Ω,

Boundary conditions on Γ = ∂Ω,

where:

• z1 = α1 + iβ1 and k(x, y) is the wavenumber

• for ”solid” boundaries: Dirichlet/Neumann
• for ”fictitious” boundaries: Sommerfeld du

dn
− iku = 0

• Perfectly Matched Layer (PML)
• Absorbing Boundary Layer (ABL)

C. Vuik, December 7, 2007 3 – p.3/28



Delft University of Technology

Discretization

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, O(h2).

Linear system

Ax = b, A ∈ C
N×N , b, x ∈ C

N ,
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Discretization

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, O(h2).

Linear system

Ax = b, A ∈ C
N×N , b, x ∈ C

N ,

A is a sparse, highly indefinite matrix for practical values of k.
Special property A = AT .

For high resolution a very fine grid is required: 30 − 60 grid-points per

wavelength (or ≈ 5 − 10 × k) → A is extremely large!

C. Vuik, December 7, 2007 4 – p.4/28



Delft University of Technology

Characteristic properties of the problem

• A ∈ C
N×N is sparse

• wavenumber k and grid size N are very large
• wavenumber k varies discontinuously
• real parts of the eigenvalues of A are positive and negative
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Application: geophysical survey

Marmousi model (hard)
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Application: geophysical survey
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2. Spectrum of shifted Laplacian preconditioners

Operator based preconditioner P is based on a discrete version of

−∂xxu − ∂yyu − (α2 + iβ2)k
2(x, y)u = f, in Ω.

appropriate boundary conditions

Matrix P−1 is approximated by an inner iteration process.

α2 = 0 β2 = 0 Laplacian Bayliss and Turkel, 1983
α2 = −1 β2 = 0 Definite Helmholtz Laird, 2000
α2 = 0 β2 = −1 Complex Erlangga, Vuik and
α2 = 1 β2 = −0.5 ’Optimal’ Oosterlee, 2004, 2006

C. Vuik, December 7, 2007 7 – p.7/28



Delft University of Technology

Spectrum of shifted Laplacian preconditioners

After discretization we obtain the (un)damped Helmholtz operator

L − z1M,

where L and M are SPD matrices and z1 = α1 + iβ1.

The preconditioner is then given by

L − z2M,

where z2 = α2 + iβ2 is chosen such that
• systems with the preconditioner are easy to solve,
• the outer Krylov process is accelerated significantly.
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Spectrum of shifted Laplacian preconditioners

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since L and M are SPD we have the following eigenpairs

Lvj = λjMvj , where, λj ∈ R
+

The eigenvalues σj of the preconditioned matrix satisfy

(L − z1M)vj = σj(L − z2M)vj .

Theorem 1
Provided that z2 6= λj , the relation

σj =
λj − z1

λj − z2

holds.
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Spectrum of shifted Laplacian preconditioners

Theorem 2
If β2 = 0, the eigenvalues σr + iσi are located on the straight line in the
complex plane given by

β1σr − (α1 − α2)σi = β1.
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Spectrum of shifted Laplacian preconditioners

Theorem 2
If β2 = 0, the eigenvalues σr + iσi are located on the straight line in the
complex plane given by

β1σr − (α1 − α2)σi = β1.

Theorem 3
If β2 6= 0, the eigenvalues σr + iσi are on the circle in the complex
plane with center c and radius R:

c =
z1 − z̄2

z2 − z̄2

, R =

∣

∣

∣

∣

z2 − z1

z2 − z̄2

∣

∣

∣

∣

.

Note that if β1β2 > 0 the origin is not enclosed in the circle.
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Spectrum of shifted Laplacian preconditioners

Using Sommerfeld boundary conditions, it impossible to write the
matrix as L − z1M where, L and M are SPD.

Generalized matrix
L + iC − z1M,

where L, M , and C are SPD. Matrix C contains Sommerfeld boundary
conditions (or other conditions: PML, ABL).

Use as preconditioner
L + iC − z2M.
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Spectrum of shifted Laplacian preconditioners

Suppose
(L + iC)v = λCMv

then
(L + iC − z1M)v = σC(L + iC − z2M)v.

Theorem 4

Let β2 6= 0 then the eigenvalues σC are in or on the circle with center

c = z1−z̄2

z2−z̄2

and radius R =
∣

∣

∣

z2−z1

z2−z̄2

∣

∣

∣
.
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3. Shift with an SPD real part

Motivation: the preconditioned system is easy to solve.
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Optimization of the shift

Which choices for z2 are optimal?
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Optimal choices forz2?
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Optimal choices forz2?

Damping Optimal β2 "optimal" iterations Minimum iterations

β1 = 0 -1 56 54

β1 = −0.1 -1.005 42 41

β1 = −0.5 -1.118 20 20

β1 = −1 -1.4142 13 13
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Optimal choices forz2?

Damping Optimal β2 "optimal" iterations Minimum iterations

β1 = 0 -1 56 54

β1 = −0.1 -1.005 42 41

β1 = −0.5 -1.118 20 20

β1 = −1 -1.4142 13 13

Number of iterations

h 100/2 100/4 100/8 100/16 100/32
f 2 4 8 16 32

β1 = 0 14 25 56 116 215

β1 = −0.1 13 22 42 63 80

β1 = −0.5 11 16 20 23 23

β1 = −1 9 11 13 13 23
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Superlinear convergence of GMRES
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Superlinear convergence of GMRES

0 20 40 60 80 100 120
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

f = 8. beta1 = 0.05 , no radiation condition

Number of iterations

S
ca

le
d 

re
si

du
al

 n
or

m

C. Vuik, December 7, 2007 17 – p.17/28



Delft University of Technology

Superlinear convergence of GMRES
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4. General Shifted Laplacian preconditioner

No restriction on α2

For the outer loop α2 = 1 and β2 = 0 is optimal. Convergence in 1
iteration. But, the inner loop does not converge with multi-grid (original
problem).

However, it appears that multi-grid works well for α2 = 1 and β2 = −1

and the convergence of the outer loop is much faster than for the choice

α2 = 0 and β2 = −1.
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Eigenvalues for Complex preconditionerk = 100 andα2 = 1

Spectrum is independent of the grid size
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Eigenvalues forβ1 = −0.025 (damping) andα2 = −1, β2 = −0.5

Spectrum is independent of the grid size and the choice of k.
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5. Numerical experiments

Multi-grid components
• geometric multi-grid
• ω-JAC smoother
• matrix dependent interpolation, restriction operator full weighting
• Galerkin coarse grid approximation
• F(1,1)-cycle

• P−1 is approximated by one multi-grid iteration
• in 3D semi-coarsening is used
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Spectrum with inner iteration
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Sigsbee model
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Sigsbee model

dx = dz = 22.86 m; D = 24369 × 9144 m2; grid points 1067 × 401.

Bi-CGSTAB 5 Hz 10 Hz

CPU (sec) Iter CPU (sec) Iter

NO preco 3128 16549 1816 9673

With preco 86 48 92 58

Note: ◮ Without preconditioner, number of iterations > 104,
◮ With shifted Laplacian preconditioner, only 58 iterations.
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3D wedge problem
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Numerical results for 3D wedge problem
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Numerical results for 3D wedge problem
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6. Conclusions

• The shifted Laplacian operator leads to robust preconditioners for
the 2D and 3D Helmholtz equations with various boundary
conditions.

• For real shifts the eigenvalues of the preconditioned operator are
on a straight line.

• For complex shifts the eigenvalues of the preconditioned operator
are on a circle.

• The proposed preconditioner (shifted Laplacian + multi-grid) is
independent of the grid size and linearly dependent of k.

• With physical damping the proposed preconditioner is also
independent of k.
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Further information/research

• http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html
• Y.A. Erlangga, C. Vuik and C.W. Oosterlee

On a class of preconditioners for solving the Helmholtz equation
Appl. Num. Math., 50, pp. 409-425, 2004

• Y.A. Erlangga, C.W. Oosterlee and C. Vuik
A Novel Multigrid Based Preconditioner For Heterogeneous
Helmholtz Problems
SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006

• M.B. van Gijzen, Y.A. Erlangga and C. Vuik
Spectral analysis of the discrete Helmholtz operator
preconditioned with a shifted Laplacian
SIAM J. Sci. Comput., 2007, 29, pp. 1942-1958, 2007
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