Implicit time integration methods and inexact Newton methods: application to chemical vapor deposition

C. Vuik¹ S. van Veldhuizen¹ C.R. Kleijn²

¹Delft University of Technology Delft Institute of Applied Mathematics J.M. Burgerscentrum

²Delft University of Technology Department of Multi Scale Physics J.M. Burgerscentrum

Kolloquium der Arbeitsgruppe Modellierung, Numerik, Differentialgleichungen Technical University Berlin, Germany

Vuik, Van Veldhuizen and Kleijn Implicit time integration methods and inexact Newton method

Outline

Chemical Vapor Deposition Transport Model

Chemical Vapor Deposition

- Synthesizes thin solid film from gaseous phase by chemical reaction on solid material
- Reactions driven by thermal energy

ŤUDelft

Vuik, Van Veldhuizen and Kleijn

Implicit time integration methods and inexact Newton method

Conclusions

Chemical Vapor Deposition

Chemical Vapor Deposition

Applications

- Semiconductors
- Solar cells
- Optical, mechanical and decorative coatings

ŤUDelft

Chemical Vapor Deposition Transport Model

Transport Model for CVD

Mathematical Model

- Continuity equation
- Navier-Stokes equations
- Energy equation in terms of temperature
- Species equation
- Ideal gas law

Species Equation

• Advection Diffusion Reaction Equation

$$\frac{\partial(\rho\omega)}{\partial t} = \nabla \cdot (\rho v\omega) + \nabla \cdot (\mathbb{D}\nabla\omega) + m \sum_{k=1}^{\text{\#reactions}} \nu_k R_k^G$$

Implicit time integration methods and inexact Newton method

Conclusions

Chemical Vapor Deposition Transport Model

Transport Model for CVD

Reaction Rate

Net molar reaction rate

$$R_{k}^{G} = k_{k,fw} \sum_{i=1}^{S} \|\nu_{i,s}\| c_{i} - k_{k,bw} \sum_{i=1}^{S} \|-\nu_{i,s}\| c_{i}$$

• Modified Law of Arrhenius $k_{k,fw} = A_k \cdot T^{\beta_k} e^{-\frac{E_k}{RT}}$ • max $(k_{k,fw})/\min(k_{k,bw}) = 10^{28}$

Properties Mathematical Model of CVD

- Consists of (#species -1 + 3 + d) coupled PDEs
- Stiff nonlinear system of species equations

Properties Positivity Nonlinear Solvers Linear Solvers

TUDelft

Numerical Methods

Properties

- Stiff Problem → Stable Time Integration
- Positivity (= preservation of non-negativity): Negative Species can cause blow up of the solution
- Efficiency / Robustness
- Method of Lines approach

Properties Positivity Nonlinear Solvers Linear Solvers

Positivity

Mass fractions

A natural property for mass fractions is their non-negativity

Positivity of mass fractions should hold for ...

- Model equations
- Spatial discretization: Hybrid scheme Introduces locally first order upwinding
- Time integration
- Iterative solvers: (Non)linear solver

Properties Positivity Nonlinear Solvers Linear Solvers

Positivity for ODE systems

Euler Backward

•
$$W_{n+1} - W_n = \tau F(t_{n+1}, W_{n+1})$$

Unconditionally stable (A-stable/ stiffly stable)

Theorem (Hundsdorfer, 1996)

Euler Backward is positive for any step size τ

Theorem (Bolley and Crouzeix, 1970)

Any unconditionally positive time integration is at most first order accurate

Properties Positivity Nonlinear Solvers Linear Solvers

ŤUDelft

Nonlinear Solvers

Inexact Newton to solve F(x) = 0

Let x_0 be given. **FOR** k = 1, 2, ... until 'convergence' Find some $\eta_k \in [0, 1)$ and s_k that satisfy

$$\|\boldsymbol{F}(\boldsymbol{x}_k) + \boldsymbol{F}'(\boldsymbol{x}_k)\boldsymbol{s}_k\| \leq \eta_k \|\boldsymbol{F}(\boldsymbol{x}_k)\|.$$

Set $x_{k+1} = x_k + s_k$. ENDFOR

Properties Positivity Nonlinear Solvers Linear Solvers

Nonlinear Solvers

Inexact Newton Condition

$$\|F(\mathbf{x}_k) + F'(\mathbf{x}_k)\mathbf{s}_k\| \leq \eta_k \|F(\mathbf{x}_k)\|$$

Choices for Forcing Term

•
$$\eta_k = \frac{\left| \|F(x_k)\| - \|F(x_{k-1}) - F'(x_{k-1})s_{k-1}\| \right|}{\|F(x_{k-1})\|}$$

• $\eta_k = \gamma \frac{\|F(x_k)\|^2}{\|F(x_{k-1})\|^2}$

Properties Positivity Nonlinear Solvers Linear Solvers

Vuik, Van Veldhuizen and Kleijn

Implicit time integration methods and inexact Newton method

Properties Positivity Nonlinear Solvers Linear Solvers

Lexicographic ordering (left) and Alternate blocking per grid point(right)

Properties Positivity Nonlinear Solvers Linear Solvers

Iterative Linear Solver

- Right preconditioned BiCGStab
- $\bullet\,$ 'Heavy' chemistry terms \rightarrow diagonal blocks

Incomplete Factorization: ILU(0)

	lexico	alternate blocking		
Number of	graphic	per gridpoint		
F	220	197		
Newton iters	124	111		
Linesearch	12	7		
Rej. time steps	0	0		
Acc. time steps	36	36		
CPU Time	400	300		
linear iters	444	346		

Properties Positivity Nonlinear Solvers Linear Solvers

Preconditioners: Lumping

Important: Lumping per species

Properties Positivity Nonlinear Solvers Linear Solvers

Preconditioners: Block Diagonal

- 'natural' blocking over species
- series of uncoupled systems → LU factorization per subsystem

Properties Positivity Nonlinear Solvers Linear Solvers

Preconditioners: Block D-ILU

- Block version of the matrix derived from central differences on a Cartesian product grid
- To compute: inverse of a diagonal block \rightarrow solve linear system directly
- Storage: factorization of diagonal blocks

Kleijn's Benchmark Problem

Computational Domain

- Axisymmetric
- 0.1 mole% SiH₄ at the inflow
- Rest is carrier gas helium He
- Susceptor does not rotate

Vuik, Van Veldhuizen and Kleijn Implicit time integration methods and inexact Newton method

Kleijn's Benchmark Problem

- grid sizes: 35 × 32 up to 70 × 82 grid points
- Temperature: Inflow 300 K Susceptor 1000 K
- Uniform velocity at inflow

Kleijn's Benchmark Problem

Chemistry Model: 16 species, 26 reactions [1]

- Above heated wafer SiH₄ decomposes into SiH₂ and H₂
- Chain of 25 homogeneous gas phase reactions
- Including the carrier gas the gas mixture contains 17 species, of which 14 contain silicon atoms
- Irreversible surface reactions at the susceptor leads to deposition of solid silicon

[1] M.E. Coltrin, R.J. Kee and G.H. Evans, A Mathematical Model of the Fluid Mechanics and Gas-Phase Chemistry

in a Rotating Chemical Vapor Deposition Reactor, J. Electrochem. Soc., 136, (1989)

Numerical Results

ntegration	statistics:	35×32	arid
			<u> </u>

	ILU(0) Lumped		block	block	block direct	
		Jac	DILU	diag	solver	
F	197	310	210	3181	190	
Newton	111	185	112	1239	94	
linesearch	7	20	13	0	11	
Rej. time step	0	3	0	459	1	
Acc. time step	36	41	36	774	38	
lin iters	346	3693	676	3315		
CPU	300	590	380	3250	6500	

Numerical Results

Integration statistics: 70×82 grid

	ILU(0)	Lumped	block	block
		Jac	DILU	diag
F	869	nf	613	nf
Newton	476	nf	327	nf
linesearch	127	nf	106	nf
Rej. time step	15	nf	0	nf
Acc. time step	62	nf	37	nf
lin iters	8503	nf	2036	nf
CPU	7400	nf	5300	nf

Direct solver is not feasable.

Kleijn's Benchmark Problem

Validation: Species mass fraction along the symmetry axis

- solid: Kleijn's solutions
- circles: our solutions

Kleijn's Benchmark Problem

Validation: Radial profiles of total steady state deposition rate

- wafer temperature from 900 K up to 1100 K
- solid: Kleijn's solutions
- circles: our solutions

Kleijn's Benchmark Problem

Kleijn's Benchmark Problem

Transient behavior of deposition rates

Conclusions and Future Research

Conclusions

- Euler Backward is unconditionally positive, but Inexact Newton does not preserve this property
- Alternate blocking per grid point is more effective
- Easy preconditioners are effective for 2D problem
- Chemistry source terms should be in the preconditioner

Conclusions and Future Research

Future Research

- 3D transient simulations
- How to preserve positivity when iterative linear solvers are used ?
- More realistic chemistry/surface chemistry models
- Steady state solver

References and Contact Information

References

- S. VAN VELDHUIZEN, C. VUIK AND C.R. KLEIJN, Comparison of Numerical Methods for Transient CVD Simulations, Surface and Coatings Technology, 201, pp. 8859-8862, (2007)
- S. VAN VELDHUIZEN, C. VUIK AND C.R. KLEIJN, Numerical Methods for Reacting Gas Flow Simulations, International Journal for Multiscale Computational Engineering, 5, pp. 1-10, (2007)
- S. VAN VELDHUIZEN, C. VUIK AND C.R. KLEIJN, Numerical Methods for Reacting Gas Flow Simulations, in: V.N. Alexandrov et al. (Eds.): ICCS 2006, Part II, LNCS 3992, pp.10-17, (2006)
- C.R. KLEIJN, Computational Modeling of Transport Phenomena and Detailed Chemistry in Chemical Vapor Deposition- A Benchmark Solution, Thin Solid Films, 365, pp. 294-306, (2000)

References and Contact Information

Contact Information

- Email: c.vuik@tudelft.nl
- Url: http://ta.twi.tudelft.nl/users/vuik/