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The incompressible Navier Stokes equation

−ν∇2
u + u.∇u + ∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity vector
p is the pressure field
ν > 0 is the kinematic viscosity coefficient ( 1/Re).
Ω ⊂ R

2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .
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Linear system

The finite element discretization give rise to a non-linear system.
Matrix form after linearization:
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where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = A in Stokes problem, A is vector Laplacian matrix

• F = νA + N in Picard linearization, N is vector-convection matrix

• F = νA + N + W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric otherwise.
Saddle point problem having large number of zeros on the main diagonal
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Iterative Solution Techniques

• Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations
xk+1 = M−1(Nxk + b) = Qxk + s, where A = M − N

Jacobi, Gauss Seidel, SOR, SSOR

• Krylov Subspace Methods:

xk+1 = xk + αkpk

Some well known methods are
CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],
GMRESR[1994], GCR[1986], IDR(s)[2007]
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IDR and IDR(s) (Induced Dimension Reduction)

Sonneveld developed IDR the 1970’s. IDR is a finite termination

Krylov method for solving nonsymmetric linear systems.

Analysis showed that IDR can be viewed as Bi-CG combined

with linear minimal residual steps.

This discovery led to the development of first CGS, and later of

Bi-CGSTAB (by van der Vorst).

As a result of these developments the basic IDR-idea was

abandoned for the Bi-CG-approach.

Recently, Sonneveld and van Gijzen discovered that the

IDR-approach was abandoned too soon and proposed a

generalization of IDR: IDR(s).
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The IDR approach for solving Ax = b

Generate residuals rn = b − Axn that are in subspaces Gj of

decreasing dimension.

These nested subspaces are related by

Gj = (I − ωjA)(Gj−1 ∩ S)

where

• S is a fixed proper subspace of CN . S can be taken to be

the orthogonal complement of s randomly chosen vectors

pi, i = 1 · · · s.

• The parameters ωj ∈ C are non-zero scalars.

It can be proved that ultimately rn ∈ {0} (IDR theorem).
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IDR versus Bi-CG

The IDR(s) forces the residual to be in an increasingly small

subspace, while Bi-CG constructs a residual in an increasingly

large subspace. Yet, IDR(s) is closely related to:

• Bi-CGSTAB: IDR(1) and Bi-CGSTAB are mathematically

equivalent.

• ML(k)BiCGSTAB (Yeung and Chan, 1999): This method

generalizes Bi-CGSTAB using multiple ’shadow residuals’.

Mathematically IDR(s) and ML(k)BiCGSTAB differ in the

selection of the parameters ωj .

IDR(s) uses simpler recurrences, less vector operations and

memory than ML(k)BiCGSTAB, and is more flexible (e.g. to

avoid break down).
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Prototype IDR( s) algorithm.

while ‖rn‖ > TOL or n < MAXIT do
for k = 0 to s do

Solve c from PHdRnc = PHrn

v = rn − dRnc; t = Av;

if k = 0 then
ω = (tHv)/(tHt);

end if
drn = −dRnc − ωt; dxn = −dXnc + ωv;

rn+1 = rn + drn; xn+1 = xn + dxn;

n = n + 1;

dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);

end for
end while
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More information

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

- IDR(s) is described in: IDR(s): a family of simple and fast

algorithms for solving large nonsymmetric linear systems.

(To appear in revised version in SISC).

• The relation of IDR(s) with Bi-CGSTAB, and how to derive

generalizations of Bi-CGSTAB using IDR-ideas can be

found in: Bi-CGSTAB as an induced dimension reduction

method (with Sleijpen).

• A high quality IDR(s) implementation is described in: An

elegant IDR(s) variant that efficiently exploits

bi-orthogonality properties.

• MATLAB implementation of IDR(s).
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Preconditioning

A linear system Ax = b is transformed into P−1Ax = P−1b such that

• P ≈ A

• Eigenvalues of P−1A are more clustered than A

• Pz = r cheap to compute

Several approaches, we will discuss here

• Block triangular preconditioners
(LSC, Least Squares Commutator)

• SIMPLE-type block preconditioners

• Preconditioners comparison (with SILU[Rehman2008])

• Preconditioned IDR(s) and Bi-CGSTAB comparison
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Block preconditioners

Block triangular preconditioner
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Subsystems: solve z2 from Sz2 = r2, and z1 from Fz1 = r1 − BT z2
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Block preconditioners

Generalized eigenvalue problem
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This eigenvalue problem has the eigenvalues λ = 1 of multiplicity n and the remaining
eigenvalues depend on the Schur complement

BF−1BT p = µiSp,

µi = 1 if S = BF−1BT , however

• In practice F−1 and S−1 are expensive.

• F−1 is obtained by an approximate solve

• S is first approximated and then solved inexactly
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Block preconditioners

Least squares commutator (LSC) preconditioner
[Elman, Howle, Shadid, Silvester and Tuminaro, 2002]

S ≈ −(BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

Q is the diagonal of the velocity mass matrix.

- Two Poisson solves
- One velocity solve
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SIMPLE(R) preconditioner

0

@
u∗

p∗

1

A =

0

@
uk

pk

1

A + M−1

L
BL

0

@

0

@
ru

rp

1

A − A

0

@
uk

pk

1

A

1

A ,

0

@
uk+1

pk+1

1

A =

0

@
u∗

p∗

1

A + BRM−1

R

0

@

0

@
ru

rp

1

A − A

0

@
u∗

p∗

1

A

1

A .

Where

BR =

0

@
I −D−1BT

0 I

1

A , MR =

0

@
F 0

B Ŝ
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SIMPLE-type preconditioner

Assuming u∗ and p∗ equal zero, the steps in SIMPLE reduce to:

SIMPLE preconditioner[Vuik 2000]:

1. Solve Fu∗ = ru.

2. Solve Ŝδp = rp − Bu∗.

3. update u = u∗ − D−1BT δp.

4. update p = δp.

- One Poisson solve
- One velocity solve
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SIMPLE-type preconditioner

Assuming uk and pk equal zero, the steps in SIMPLER reduce to:
SIMPLER preconditioner:

1. Solve Ŝp∗ = rp − BD−1ru

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝδp = rp − Bu∗.

4. update u = u∗ − D−1BT δp.

5. update p = p∗ + δp.

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one or two velocity
solves) are identical.

• Two Poisson solve

• One velocity solve

• Gives faster convergence than SIMPLE
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Improvements in SIMPLE-type preconditioners

• Relaxation parameter

• hSIMPLER

• MSIMPLER
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Improvements in SIMPLE(R) preconditioners

Relaxation parameter:
• Under-relaxation is well-known in SIMPLE-type methods.

• In SIMPLE preconditioner, velocity relaxation has no effect on the convergence,
therefore only pressure is under-relaxed by a factor ω.
p = p∗ + ωδp, where ω is chosen between 0 and 1.

• ω has no effect on convergence with SIMPLER due to extra pressure correction
step.

• Faster convergence is achieved in some cases.

• Choice of ω is currently based on trial an error.
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Improvements in SIMPLE(R) preconditioners

hSIMPLER preconditioner:

In hSIMPLER (hybrid SIMPLER), first iteration of Krylov method preconditioned with
SIMPLER is done with SIMPLE and SIMPLER is employed afterwards.
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- Faster convergence than SIMPLER
- Effective in the Stokes problem
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Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:
Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.
LSC: Ŝ ≈ −(BQ̂−1

u BT )(BQ̂−1
u FQ̂−1

u
| {z }

BT )−1(BQ̂−1
u BT )

assuming FQ̂−1
u ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂−1
u BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with
Q̂−1

u .

-Convergence better than other variants of SIMPLE
-Cheaper than SIMPLER (in construction) and LSC (per iteration)
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Numerical Experiments

• Driven Cavity flow (2D)

• Backward facing step flow (2D and 3D)

• Q2-Q1 finite element discretization [Taylor, Hood - 1973]

• Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]

• GCR(20), Bi-CGSTAB, GMRES, IDR(s)

• The iteration is stopped if the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol,

• Experiments done with IFISS (Matlab program) and SEPRAN (industrial FEM
code)
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Numerical Experiments (SIMPLE type preconditioners)

Stokes backward facing step solved with preconditioned GCR (20) with
accuracy of 10−6 , PCG used as an inner solver (SEPRAN), Green: Low inner
accuracy , Yellow: High inner accuracy

Grid SIMPLE SIMPLER hSIMPLER MSIMPLER

iter. (ts) iter. (ts) iter. (ts) iter. (ts)

8 × 24 39(0.06) 26(0.05) 19(0.03) 11(0.02)

37(0.14) 19(0.07) 17(0.06) 12(0.05)

16 × 46 72(0.6) 42(0.5) 31(0.34) 12(0.1)

68(1.94) 30(0.86) 24(0.68) 15(0.44)

32 × 96 144(8.2) NC 44(5.97) 16(0.9)

117(34) 114(32) 37(10.6) 20(5.75)

64 × 192 256(93) NC 89(141) 23(8.5)

230(547) NC 68(161) 25(60)
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Numerical Experiments (SIMPLE type preconditioners)

SIMPLE with relaxation parameter
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Numerical Experiments (SIMPLE type preconditioners)

Effect of relaxation parameter: The Stokes problem solved i n Q2-Q1 discretized
driven cavity problem with varying ω: 32 × 32 grid (Left), 64 × 64 grid (Right).
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Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with
preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1
hexahedrons

Grid SIMPLE LSC MSIMPLER

iter. (ts) in-it-u
in-it-p

8 × 8 × 16 44(4) 97

342
16(1.9) 41

216
14(1.4) 28

168

16 × 16 × 32 84(107) 315

1982
29(51) 161

1263
17(21) 52

766

24 × 24 × 48 99(447) 339

3392
26(233) 193

2297
17(77) 46

1116

32 × 32 × 40 132(972) 574

5559
37(379) 233

2887
20(143) 66

1604
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Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in solving th e Navier-Stokes
problem with preconditioned GCR(20) with accuracy of 10−2 (SEPRAN) using
Q2-Q1 hexahedrons

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 32

100 173(462) 96(162) 321(114)

200 256(565) 145(223) 461(173)

400 399(745) 235(312) 768(267)

32 × 32 × 40

100 240(5490) 130(1637) 1039(1516)

200 NC 193(2251) 1378(2000)

400 675(11000) 295(2800) 1680(2450)
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Numerical Experiments (overall comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-St okes problem is solved
with accuracy 10−4, a linear system at each Picard step is solved with accuracy
10−2 using preconditioned Krylov subspace methods. Bi-CGSTAB i s used as
inner solver in block preconditioners(SEPRAN)

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32 × 32 × 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)
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Numerical Experiments (IDR( s))

IDR(s): Top: 32 × 32, Bottom: 64 × 64 driven cavity Stokes flow problem
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Numerical Experiments (IDR( s) vs Bi-CGSTAB)

SILU preconditioner: Comparison of iterative methods for i ncreasing grid size for
the driven cavity Stokes flow problem.

Grid Bi-CGSTAB IDR(4)

Mat.-Vec. (ts) Mat.-Vec. (ts)

16 × 16 38(0.01) 33(0.01)

32 × 32 90(0.14) 75(0.14)

64 × 64 214(1.6) 159(1.4)

128 × 128 512(16) 404(15)

256 × 256 1386(183) 1032(156)



31

Numerical Analysis Group, DIAM

Numerical Experiments (IDR( s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for i ncreasing stretch
factor for the driven cavity Stokes problem.
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Numerical Experiments (IDR( s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for t he backward facing
step Stokes problem.

Grid Bi-CGSTAB IDR(s)

Mat.-Vec.(ts) Mat.-Vec.(ts) s

32 × 96 214(1.3) 168(1.26) 4

64 × 96 NC 597(7.7) 4

96 × 96 NC 933(18) 4

128 × 96 NC 1105(31) 8
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Conclusions

• Relaxation parameter improves performance of the SIMPLE preconditioner.

• hSIMPLER shows faster convergence than SIMPLER.

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In contrast with SIMPLER and hSIMPLER , SIMPLE and MSIMPLER are not
sensitive to the accuracies that are used for the inner solvers.

• In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns
both the number of outer iterations, inner iterations and CPU time.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when
the problem is solved with high accuracy.

• IDR(s) is faster and more robust than Bi-CGSTAB.
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