
1

Numerical Analysis Group, DIAM
Delft University of Technology

SIMPLE-type preconditioners for the Oseen problem

C. Vuik, M. ur Rehman, and A. Segal

Delft University of Technology

Delft Institute of Applied Mathematics

Delft, The Netherlands.

2

Numerical Analysis Group, DIAM

Outline

• Introduction
• Solution technique
• IDR(s) method
• Preconditioning
• Numerical experiments
• Conclusions

3

Numerical Analysis Group, DIAM

The incompressible Navier Stokes equation

−ν∇2
u + u.∇u + ∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity vector
p is the pressure field
ν > 0 is the kinematic viscosity coefficient (1/Re).
Ω ⊂ R

2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .

4

Numerical Analysis Group, DIAM

Linear system

The finite element discretization give rise to a non-linear system.
Matrix form after linearization:

2

4
F BT

B 0

3

5

2

4
u

p

3

5 =

2

4
f

g

3

5

where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = A in Stokes problem, A is vector Laplacian matrix

• F = νA + N in Picard linearization, N is vector-convection matrix

• F = νA + N + W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric otherwise.
Saddle point problem having large number of zeros on the main diagonal

5

Numerical Analysis Group, DIAM

Iterative Solution Techniques

• Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations
xk+1 = M−1(Nxk + b) = Qxk + s, where A = M − N

Jacobi, Gauss Seidel, SOR, SSOR

• Krylov Subspace Methods:

xk+1 = xk + αkpk

Some well known methods are
CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],
GMRESR[1994], GCR[1986], IDR(s)[2007]

6

Numerical Analysis Group, DIAM

IDR and IDR(s) (Induced Dimension Reduction)

Sonneveld developed IDR the 1970’s. IDR is a finite termination

Krylov method for solving nonsymmetric linear systems.

Analysis showed that IDR can be viewed as Bi-CG combined

with linear minimal residual steps.

This discovery led to the development of first CGS, and later of

Bi-CGSTAB (by van der Vorst).

As a result of these developments the basic IDR-idea was

abandoned for the Bi-CG-approach.

Recently, Sonneveld and van Gijzen discovered that the

IDR-approach was abandoned too soon and proposed a

generalization of IDR: IDR(s).

7

Numerical Analysis Group, DIAM

The IDR approach for solving Ax = b

Generate residuals rn = b − Axn that are in subspaces Gj of

decreasing dimension.

These nested subspaces are related by

Gj = (I − ωjA)(Gj−1 ∩ S)

where

• S is a fixed proper subspace of CN . S can be taken to be

the orthogonal complement of s randomly chosen vectors

pi, i = 1 · · · s.

• The parameters ωj ∈ C are non-zero scalars.

It can be proved that ultimately rn ∈ {0} (IDR theorem).

8

Numerical Analysis Group, DIAM

IDR versus Bi-CG

The IDR(s) forces the residual to be in an increasingly small

subspace, while Bi-CG constructs a residual in an increasingly

large subspace. Yet, IDR(s) is closely related to:

• Bi-CGSTAB: IDR(1) and Bi-CGSTAB are mathematically

equivalent.

• ML(k)BiCGSTAB (Yeung and Chan, 1999): This method

generalizes Bi-CGSTAB using multiple ’shadow residuals’.

Mathematically IDR(s) and ML(k)BiCGSTAB differ in the

selection of the parameters ωj .

IDR(s) uses simpler recurrences, less vector operations and

memory than ML(k)BiCGSTAB, and is more flexible (e.g. to

avoid break down).

9

Numerical Analysis Group, DIAM

Prototype IDR(s) algorithm.

while ‖rn‖ > TOL or n < MAXIT do
for k = 0 to s do

Solve c from PHdRnc = PHrn

v = rn − dRnc; t = Av;

if k = 0 then
ω = (tHv)/(tHt);

end if
drn = −dRnc − ωt; dxn = −dXnc + ωv;

rn+1 = rn + drn; xn+1 = xn + dxn;

n = n + 1;

dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);

end for
end while

10

Numerical Analysis Group, DIAM

More information

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

- IDR(s) is described in: IDR(s): a family of simple and fast

algorithms for solving large nonsymmetric linear systems.

(To appear in revised version in SISC).

• The relation of IDR(s) with Bi-CGSTAB, and how to derive

generalizations of Bi-CGSTAB using IDR-ideas can be

found in: Bi-CGSTAB as an induced dimension reduction

method (with Sleijpen).

• A high quality IDR(s) implementation is described in: An

elegant IDR(s) variant that efficiently exploits

bi-orthogonality properties.

• MATLAB implementation of IDR(s).

11

Numerical Analysis Group, DIAM

Preconditioning

A linear system Ax = b is transformed into P−1Ax = P−1b such that

• P ≈ A

• Eigenvalues of P−1A are more clustered than A

• Pz = r cheap to compute

Several approaches, we will discuss here

• Block triangular preconditioners
(LSC, Least Squares Commutator)

• SIMPLE-type block preconditioners

• Preconditioners comparison (with SILU[Rehman2008])

• Preconditioned IDR(s) and Bi-CGSTAB comparison

12

Numerical Analysis Group, DIAM

Block preconditioners

Block triangular preconditioner
2

4
F BT

B 0

3

5 =

2

4
I 0

BF−1 I

3

5

2

4
F 0

0 S

3

5

2

4
I F−1BT

0 I

3

5

| {z }

Pt =

2

4
F BT

0 S

3

5 , S = −BF−1BT (Schur complement matrix)

Subsystems: solve z2 from Sz2 = r2, and z1 from Fz1 = r1 − BT z2

13

Numerical Analysis Group, DIAM

Block preconditioners

Generalized eigenvalue problem

2

4
F BT

B 0

3

5

2

4
u

p

3

5 = λ

2

4
F BT

0 S

3

5

2

4
u

p

3

5 ,

This eigenvalue problem has the eigenvalues λ = 1 of multiplicity n and the remaining
eigenvalues depend on the Schur complement

BF−1BT p = µiSp,

µi = 1 if S = BF−1BT , however

• In practice F−1 and S−1 are expensive.

• F−1 is obtained by an approximate solve

• S is first approximated and then solved inexactly

14

Numerical Analysis Group, DIAM

Block preconditioners

Least squares commutator (LSC) preconditioner
[Elman, Howle, Shadid, Silvester and Tuminaro, 2002]

S ≈ −(BQ−1BT)(BQ−1FQ−1BT)−1(BQ−1BT)

Q is the diagonal of the velocity mass matrix.

- Two Poisson solves
- One velocity solve

15

Numerical Analysis Group, DIAM

SIMPLE(R) preconditioner

0

@
u∗

p∗

1

A =

0

@
uk

pk

1

A + M−1

L
BL

0

@

0

@
ru

rp

1

A − A

0

@
uk

pk

1

A

1

A ,

0

@
uk+1

pk+1

1

A =

0

@
u∗

p∗

1

A + BRM−1

R

0

@

0

@
ru

rp

1

A − A

0

@
u∗

p∗

1

A

1

A .

Where

BR =

0

@
I −D−1BT

0 I

1

A , MR =

0

@
F 0

B Ŝ

1

A and

BL =

0

@
I 0

−BD−1 I

1

A , ML =

0

@
F BT

0 Ŝ

1

A .

16

Numerical Analysis Group, DIAM

SIMPLE-type preconditioner

Assuming u∗ and p∗ equal zero, the steps in SIMPLE reduce to:

SIMPLE preconditioner[Vuik 2000]:

1. Solve Fu∗ = ru.

2. Solve Ŝδp = rp − Bu∗.

3. update u = u∗ − D−1BT δp.

4. update p = δp.

- One Poisson solve
- One velocity solve

17

Numerical Analysis Group, DIAM

SIMPLE-type preconditioner

Assuming uk and pk equal zero, the steps in SIMPLER reduce to:
SIMPLER preconditioner:

1. Solve Ŝp∗ = rp − BD−1ru

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝδp = rp − Bu∗.

4. update u = u∗ − D−1BT δp.

5. update p = p∗ + δp.

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one or two velocity
solves) are identical.

• Two Poisson solve

• One velocity solve

• Gives faster convergence than SIMPLE

18

Numerical Analysis Group, DIAM

Improvements in SIMPLE-type preconditioners

• Relaxation parameter

• hSIMPLER

• MSIMPLER

19

Numerical Analysis Group, DIAM

Improvements in SIMPLE(R) preconditioners

Relaxation parameter:
• Under-relaxation is well-known in SIMPLE-type methods.

• In SIMPLE preconditioner, velocity relaxation has no effect on the convergence,
therefore only pressure is under-relaxed by a factor ω.
p = p∗ + ωδp, where ω is chosen between 0 and 1.

• ω has no effect on convergence with SIMPLER due to extra pressure correction
step.

• Faster convergence is achieved in some cases.

• Choice of ω is currently based on trial an error.

20

Numerical Analysis Group, DIAM

Improvements in SIMPLE(R) preconditioners

hSIMPLER preconditioner:

In hSIMPLER (hybrid SIMPLER), first iteration of Krylov method preconditioned with
SIMPLER is done with SIMPLE and SIMPLER is employed afterwards.

0 10 20 30 40 50 60 70 80 90
10

−4

10
−3

10
−2

10
−1

10
0

No. of iterations

G
C

R
 r

e
la

tiv
e

 r
e

si
d

u
a

l

hSIMPLER
SIMPLE
SIMPLER

- Faster convergence than SIMPLER
- Effective in the Stokes problem

21

Numerical Analysis Group, DIAM

Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:
Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.
LSC: Ŝ ≈ −(BQ̂−1

u BT)(BQ̂−1
u FQ̂−1

u
| {z }

BT)−1(BQ̂−1
u BT)

assuming FQ̂−1
u ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂−1
u BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with
Q̂−1

u .

-Convergence better than other variants of SIMPLE
-Cheaper than SIMPLER (in construction) and LSC (per iteration)

22

Numerical Analysis Group, DIAM

Numerical Experiments

• Driven Cavity flow (2D)

• Backward facing step flow (2D and 3D)

• Q2-Q1 finite element discretization [Taylor, Hood - 1973]

• Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]

• GCR(20), Bi-CGSTAB, GMRES, IDR(s)

• The iteration is stopped if the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol,

• Experiments done with IFISS (Matlab program) and SEPRAN (industrial FEM
code)

23

Numerical Analysis Group, DIAM

Numerical Experiments (SIMPLE type preconditioners)

Stokes backward facing step solved with preconditioned GCR (20) with
accuracy of 10−6 , PCG used as an inner solver (SEPRAN), Green: Low inner
accuracy , Yellow: High inner accuracy

Grid SIMPLE SIMPLER hSIMPLER MSIMPLER

iter. (ts) iter. (ts) iter. (ts) iter. (ts)

8 × 24 39(0.06) 26(0.05) 19(0.03) 11(0.02)

37(0.14) 19(0.07) 17(0.06) 12(0.05)

16 × 46 72(0.6) 42(0.5) 31(0.34) 12(0.1)

68(1.94) 30(0.86) 24(0.68) 15(0.44)

32 × 96 144(8.2) NC 44(5.97) 16(0.9)

117(34) 114(32) 37(10.6) 20(5.75)

64 × 192 256(93) NC 89(141) 23(8.5)

230(547) NC 68(161) 25(60)

24

Numerical Analysis Group, DIAM

Numerical Experiments (SIMPLE type preconditioners)

SIMPLE with relaxation parameter

8x24 16x48 32x96 64x192
0

50

100

150

200

250

300

Grid size

N
o

.
o

f
it
e

r
a

ti
o

n
s

SIMPLE with ω
SIMPLE

8x24 16x48 32x96 64x192
10

−2

10
−1

10
0

10
1

10
2

Grid size

C
P

U
 t

im
e

(
s
e

c
o

n
d

s
)

SIMPLE with ω
SIMPLE

25

Numerical Analysis Group, DIAM

Numerical Experiments (SIMPLE type preconditioners)

Effect of relaxation parameter: The Stokes problem solved i n Q2-Q1 discretized
driven cavity problem with varying ω: 32 × 32 grid (Left), 64 × 64 grid (Right).

0 10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

No. of iterations

R
e

s
id

u
a

l
n

o
rm

ω=1
ω=0.05
ω=0.1
ω=0.5

0 20 40 60 80 100 120 140 160 180 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

No. of iterations

R
e

s
id

u
a

l
n

o
rm

ω =1

ω =0.05

ω =0.1

ω =0.5

26

Numerical Analysis Group, DIAM

Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with
preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1
hexahedrons

Grid SIMPLE LSC MSIMPLER

iter. (ts) in-it-u
in-it-p

8 × 8 × 16 44(4) 97

342
16(1.9) 41

216
14(1.4) 28

168

16 × 16 × 32 84(107) 315

1982
29(51) 161

1263
17(21) 52

766

24 × 24 × 48 99(447) 339

3392
26(233) 193

2297
17(77) 46

1116

32 × 32 × 40 132(972) 574

5559
37(379) 233

2887
20(143) 66

1604

27

Numerical Analysis Group, DIAM

Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in solving th e Navier-Stokes
problem with preconditioned GCR(20) with accuracy of 10−2 (SEPRAN) using
Q2-Q1 hexahedrons

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 32

100 173(462) 96(162) 321(114)

200 256(565) 145(223) 461(173)

400 399(745) 235(312) 768(267)

32 × 32 × 40

100 240(5490) 130(1637) 1039(1516)

200 NC 193(2251) 1378(2000)

400 675(11000) 295(2800) 1680(2450)

28

Numerical Analysis Group, DIAM

Numerical Experiments (overall comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-St okes problem is solved
with accuracy 10−4, a linear system at each Picard step is solved with accuracy
10−2 using preconditioned Krylov subspace methods. Bi-CGSTAB i s used as
inner solver in block preconditioners(SEPRAN)

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32 × 32 × 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)

29

Numerical Analysis Group, DIAM

Numerical Experiments (IDR(s))

IDR(s): Top: 32 × 32, Bottom: 64 × 64 driven cavity Stokes flow problem

0 2 4 6 8 10
140

160

180

200

220

s dimension

N
o

.
o

f
it
e

ra
ti
o

n
s

0 2 4 6 8 10
3.9

3.95

4

4.05

4.1

4.15

4.2

s dimension

C
P

U
 t

im
e

(s
)

0 2 4 6 8 10
10

2

10
3

10
4

s dimension

N
o

.
o

f
it
e

ra
ti
o

n
s

0 2 4 6 8 10
10

15

20

25

30

s dimension

C
P

U
 t

im
e

(s
)

30

Numerical Analysis Group, DIAM

Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioner: Comparison of iterative methods for i ncreasing grid size for
the driven cavity Stokes flow problem.

Grid Bi-CGSTAB IDR(4)

Mat.-Vec. (ts) Mat.-Vec. (ts)

16 × 16 38(0.01) 33(0.01)

32 × 32 90(0.14) 75(0.14)

64 × 64 214(1.6) 159(1.4)

128 × 128 512(16) 404(15)

256 × 256 1386(183) 1032(156)

31

Numerical Analysis Group, DIAM

Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for i ncreasing stretch
factor for the driven cavity Stokes problem.

0 5 10 15
200

400

600

800

1000

1200

1400

1600

Stretch factor

M
a

t.
−

V
e

c
.

Bi−CGSTAB
IDR(7)

0 5 10 15
15

20

25

30

35

40

45

50

Stretch factor
C

P
U

 t
im

e
 (

s
e

c
o

n
d

s
)

Bi−CGSTAB
IDR(7)

32

Numerical Analysis Group, DIAM

Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for t he backward facing
step Stokes problem.

Grid Bi-CGSTAB IDR(s)

Mat.-Vec.(ts) Mat.-Vec.(ts) s

32 × 96 214(1.3) 168(1.26) 4

64 × 96 NC 597(7.7) 4

96 × 96 NC 933(18) 4

128 × 96 NC 1105(31) 8

33

Numerical Analysis Group, DIAM

Conclusions

• Relaxation parameter improves performance of the SIMPLE preconditioner.

• hSIMPLER shows faster convergence than SIMPLER.

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In contrast with SIMPLER and hSIMPLER , SIMPLE and MSIMPLER are not
sensitive to the accuracies that are used for the inner solvers.

• In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns
both the number of outer iterations, inner iterations and CPU time.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when
the problem is solved with high accuracy.

• IDR(s) is faster and more robust than Bi-CGSTAB.

34

Numerical Analysis Group, DIAM

References

⋆ C. Vuik and A. Saghir and G.P. Boerstoel, "The Krylov accelerated SIMPLE(R)
method for flow problems in industrial furnaces," International Journal for Numerical

methods in fluids, 33 pp. 1027-1040, 2000.

⋆ M. ur Rehman and C. Vuik and G. Segal, "A comparison of preconditioners for
incompressible Navier-Stokes solvers," International Journal for Numerical methods in

fluids, 57, pp. 1731-1751, 2008.

⋆ M. ur Rehman and C. Vuik and G. Segal, "SIMPLE-type preconditioners for the
Oseen problem," International Journal for Numerical methods in fluids, To appear.

⋆ Peter Sonneveld and Martin B. van Gijzen, "IDR(s): a family of simple and fast
algorithms for solving large nonsymmetric linear systems," SIAM J. Sci. Comput., To
appear.

	Outline
	small The incompressible Navier Stokes equation
	small Linear system
	small Iterative Solution Techniques
	small IDR and IDR(s)
(Induced Dimension Reduction)
	small The IDR approach for solving $Am xv = �v $
	small IDR versus Bi-CG
	small Prototype IDR(s)
algorithm.
	small More information
	small Preconditioning
	small { Block preconditioners}
	 small { Block preconditioners}
	small { Block preconditioners}
	small SIMPLE(R)
preconditioner
	small SIMPLE-type preconditioner
	small SIMPLE-type preconditioner
	small Improvements in SIMPLE-type preconditioners
	small Improvements in SIMPLE(R)
preconditioners
	small Improvements in SIMPLE(R)
preconditioners
	small Improvements in SIMPLE(R)
preconditioners
	small Numerical Experiments
	small Numerical Experiments (SIMPLE type preconditioners)
	small Numerical Experiments (SIMPLE type preconditioners)
	small Numerical Experiments (SIMPLE type preconditioners)
	small Numerical Experiments (overall comparison)
	small Numerical Experiments (overall comparison)
	small Numerical Experiments (overall comparison)
	small Numerical Experiments (IDR(s))
	small Numerical Experiments (IDR(s)
vs Bi-CGSTAB)
	small Numerical Experiments (IDR(s)
vs Bi-CGSTAB)
	small Numerical Experiments (IDR(s)
vs Bi-CGSTAB)
	small Conclusions
	References

