## SIMPLE-type preconditioners for the Oseen problem

C. Vuik, M. ur Rehman, and A. Segal<br>Delft University of Technology<br>Delft Institute of Applied Mathematics<br>Delft, The Netherlands.

## Outline

- Introduction
- Solution technique
- $\operatorname{IDR}(s)$ method
- Preconditioning
- Numerical experiments
- Conclusions


## The incompressible Navier Stokes equation

$$
\begin{gathered}
-\nu \nabla^{2} \mathbf{u}+\mathbf{u} \cdot \nabla \mathbf{u}+\nabla p=f \text { in } \Omega \\
\nabla . \mathbf{u}=0 \quad \text { in } \Omega
\end{gathered}
$$

$u$ is the fluid velocity vector
$p$ is the pressure field
$\nu>0$ is the kinematic viscosity coefficient ( $1 / R e$ ).
$\Omega \subset \mathbf{R}^{2}$ or ${ }^{3}$ is a bounded domain with the boundary condition:

$$
\mathbf{u}=\mathbf{w} \text { on } \partial \Omega_{D}, \quad \nu \frac{\partial \mathbf{u}}{\partial \mathbf{n}}-\mathbf{n} p=0 \text { on } \partial \Omega_{N} .
$$

## Linear system

The finite element discretization give rise to a non-linear system.
Matrix form after linearization:

$$
\left[\begin{array}{cc}
F & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

where $F \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times n}, f \in \mathbb{R}^{n}$ and $m \leq n$

- $F=A$ in Stokes problem, $A$ is vector Laplacian matrix
- $F=\nu A+N$ in Picard linearization, $N$ is vector-convection matrix
- $F=\nu A+N+W$ in Newton linearization, $W$ is the Newton derivative matrix
- $B$ is the divergence matrix

Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric otherwise.
Saddle point problem having large number of zeros on the main diagonal

## Iterative Solution Techniques

- Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations
$x_{k+1}=M^{-1}\left(N x_{k}+b\right)=Q x_{k}+s$, where $\mathcal{A}=M-N$
Jacobi, Gauss Seidel, SOR, SSOR

- Krylov Subspace Methods:
$x_{k+1}=x_{k}+\alpha_{k} p_{k}$
Some well known methods are
CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986], GMRESR[1994], GCR[1986], IDR $(s)$ [2007]


## IDR and IDR(s) (Induced Dimension Reduction)

Sonneveld developed IDR the 1970's. IDR is a finite termination Krylov method for solving nonsymmetric linear systems.

Analysis showed that IDR can be viewed as $\mathrm{Bi}-\mathrm{CG}$ combined with linear minimal residual steps.

This discovery led to the development of first CGS, and later of Bi-CGSTAB (by van der Vorst).

As a result of these developments the basic IDR-idea was abandoned for the Bi-CG-approach.

Recently, Sonneveld and van Gijzen discovered that the IDR-approach was abandoned too soon and proposed a generalization of IDR: $\operatorname{IDR}(s)$.

## The IDR approach for solving $A x=b$

Generate residuals $\boldsymbol{r}_{n}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{n}$ that are in subspaces $\mathcal{G}_{j}$ of decreasing dimension.

These nested subspaces are related by

$$
\mathcal{G}_{j}=\left(\boldsymbol{I}-\omega_{j} \boldsymbol{A}\right)\left(\mathcal{G}_{j-1} \cap \mathcal{S}\right)
$$

where

- $\mathcal{S}$ is a fixed proper subspace of $\mathbb{C}^{N}$. $\mathcal{S}$ can be taken to be the orthogonal complement of $s$ randomly chosen vectors $\boldsymbol{p}_{i}, i=1 \cdots s$.
- The parameters $\omega_{j} \in \mathbb{C}$ are non-zero scalars.

It can be proved that ultimately $\boldsymbol{r}_{n} \in\{\mathbf{0}\}$ (IDR theorem).

## IDR versus Bi-CG

The $\operatorname{IDR}(s)$ forces the residual to be in an increasingly small subspace, while $\mathrm{Bi}-\mathrm{CG}$ constructs a residual in an increasingly large subspace. Yet, $\operatorname{IDR}(s)$ is closely related to:

- Bi-CGSTAB: IDR(1) and Bi-CGSTAB are mathematically equivalent.
- ML(k)BiCGSTAB (Yeung and Chan, 1999): This method generalizes Bi-CGSTAB using multiple 'shadow residuals'. Mathematically $\operatorname{IDR}(s)$ and $\mathrm{ML}(\mathrm{k}) \mathrm{BiCGSTAB}$ differ in the selection of the parameters $\omega_{j}$. IDR $(s)$ uses simpler recurrences, less vector operations and memory than $\mathrm{ML}(\mathrm{k}) \mathrm{BiCGSTAB}$, and is more flexible (e.g. to avoid break down).


## Prototype IDR(s) algorithm.

while $\left\|\boldsymbol{r}_{n}\right\|>T O L$ or $n<M A X I T$ do for $k=0$ to $s$ do

Solve $\boldsymbol{c}$ from $\boldsymbol{P}^{H} d \boldsymbol{R}_{n} \boldsymbol{c}=\boldsymbol{P}^{H} \boldsymbol{r}_{n}$
$\boldsymbol{v}=\boldsymbol{r}_{n}-d \boldsymbol{R}_{n} \boldsymbol{c} ; \boldsymbol{t}=\boldsymbol{A} \boldsymbol{v} ;$
if $k=0$ then

$$
\omega=\left(\boldsymbol{t}^{H} \boldsymbol{v}\right) /\left(\boldsymbol{t}^{H} \boldsymbol{t}\right) ;
$$

end if

$$
\begin{aligned}
& d \boldsymbol{r}_{n}=-d \boldsymbol{R}_{n} \boldsymbol{c}-\omega \boldsymbol{t} ; d \boldsymbol{x}_{n}=-d \boldsymbol{X}_{n} \boldsymbol{c}+\omega \boldsymbol{v} \\
& \boldsymbol{r}_{n+1}=\boldsymbol{r}_{n}+d \boldsymbol{r}_{n} ; \boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}+d \boldsymbol{x}_{n} ; \\
& n=n+1 \\
& d \boldsymbol{R}_{n}=\left(d \boldsymbol{r}_{n-1} \cdots d \boldsymbol{r}_{n-s}\right) ; d \boldsymbol{X}_{n}=\left(d \boldsymbol{x}_{n-1} \cdots d \boldsymbol{x}_{n-s}\right) ;
\end{aligned}
$$

end for
end while

## More information

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

- $\operatorname{IDR}(s)$ is described in: $\operatorname{IDR}(s)$ : a family of simple and fast algorithms for solving large nonsymmetric linear systems. (To appear in revised version in SISC).
- The relation of IDR(s) with Bi-CGSTAB, and how to derive generalizations of Bi-CGSTAB using IDR-ideas can be found in: Bi-CGSTAB as an induced dimension reduction method (with Sleijpen).
- A high quality $\operatorname{IDR}(s)$ implementation is described in: An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties.
- MATLAB implementation of $\operatorname{IDR}(s)$.


## Preconditioning

A linear system $\mathcal{A} x=b$ is transformed into $P^{-1} \mathcal{A} x=P^{-1} b$ such that

- $P \approx \mathcal{A}$
- Eigenvalues of $P^{-1} \mathcal{A}$ are more clustered than $\mathcal{A}$
- $P z=r$ cheap to compute

Several approaches, we will discuss here

- Block triangular preconditioners (LSC, Least Squares Commutator)
- SIMPLE-type block preconditioners
- Preconditioners comparison (with SILU[Rehman2008])
- Preconditioned IDR(s) and Bi-CGSTAB comparison


## Block preconditioners

Block triangular preconditioner

$$
\begin{aligned}
& {\left[\begin{array}{cc}
F & B^{T} \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
B F^{-1} & I
\end{array}\right] \underbrace{\left[\begin{array}{cc}
F & 0 \\
0 & S
\end{array}\right]\left[\begin{array}{cc}
I & F^{-1} B^{T} \\
0 & I
\end{array}\right]}} \\
& P_{t}=\left[\begin{array}{cc}
F & B^{T} \\
0 & S
\end{array}\right], S=-B F^{-1} B^{T} \text { (Schur complement matrix) }
\end{aligned}
$$

Subsystems: solve $z_{2}$ from $S z_{2}=r_{2}$, and $z_{1}$ from $F z_{1}=r_{1}-B^{T} z_{2}$

## Block preconditioners

Generalized eigenvalue problem

$$
\left[\begin{array}{cc}
F & B^{T} \\
B & 0
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]=\lambda\left[\begin{array}{cc}
F & B^{T} \\
0 & S
\end{array}\right]\left[\begin{array}{l}
u \\
p
\end{array}\right]
$$

This eigenvalue problem has the eigenvalues $\lambda=1$ of multiplicity $n$ and the remaining eigenvalues depend on the Schur complement

$$
B F^{-1} B^{T} p=\mu_{i} S p,
$$

$\mu_{i}=1$ if $S=B F^{-1} B^{T}$, however

- In practice $F^{-1}$ and $S^{-1}$ are expensive.
- $F^{-1}$ is obtained by an approximate solve
- $S$ is first approximated and then solved inexactly


## Block preconditioners

## Least squares commutator (LSC) preconditioner

[Elman, Howle, Shadid, Silvester and Tuminaro, 2002]
$S \approx-\left(B Q^{-1} B^{T}\right)\left(B Q^{-1} F Q^{-1} B^{T}\right)^{-1}\left(B Q^{-1} B^{T}\right)$
$Q$ is the diagonal of the velocity mass matrix.

- Two Poisson solves
- One velocity solve


## SIMPLE(R) preconditioner

$$
\begin{aligned}
\binom{u^{*}}{p^{*}} & =\binom{u^{k}}{p^{k}}+M_{L}^{-1} B_{L}\left(\binom{r_{u}}{r_{p}}-A\binom{u^{k}}{p^{k}}\right), \\
\binom{u^{k+1}}{p^{k+1}} & =\binom{u^{*}}{p^{*}}+B_{R} M_{R}^{-1}\left(\binom{r_{u}}{r_{p}}-A\binom{u^{*}}{p^{*}}\right) .
\end{aligned}
$$

Where

$$
\begin{gathered}
B_{R}=\left(\begin{array}{cc}
I & -D^{-1} B^{T} \\
0 & I
\end{array}\right), M_{R}=\left(\begin{array}{cc}
F & 0 \\
B & \hat{S}
\end{array}\right) \text { and } \\
B_{L}=\left(\begin{array}{cc}
I & 0 \\
-B D^{-1} & I
\end{array}\right), M_{L}=\left(\begin{array}{cc}
F & B^{T} \\
0 & \hat{S}
\end{array}\right) .
\end{gathered}
$$

## SIMPLE-type preconditioner

Assuming $u^{*}$ and $p^{*}$ equal zero, the steps in SIMPLE reduce to:
SIMPLE preconditioner[Vuik 2000]:

1. Solve $F u^{*}=r_{u}$.
2. Solve $\hat{S} \delta p=r_{p}-B u^{*}$.
3. update $u=u^{*}-D^{-1} B^{T} \delta p$.
4. update $p=\delta p$.

- One Poisson solve
- One velocity solve


## SIMPLE-type preconditioner

Assuming $u^{k}$ and $p^{k}$ equal zero, the steps in SIMPLER reduce to:

## SIMPLER preconditioner:

1. Solve $\hat{S} p^{*}=r_{p}-B D^{-1} r_{u}$
2. Solve $F u^{*}=r_{u}-B^{T} p^{*}$.
3. Solve $\hat{S} \delta p=r_{p}-B u^{*}$.
4. update $u=u^{*}-D^{-1} B^{T} \delta p$.
5. update $p=p^{*}+\delta p$.

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one or two velocity solves) are identical.

- Two Poisson solve
- One velocity solve
- Gives faster convergence than SIMPLE


# Improvements in SIMPLE-type preconditioners 

- Relaxation parameter
- hSIMPLER
- MSIMPLER


## Improvements in SIMPLE(R) preconditioners

## Relaxation parameter:

- Under-relaxation is well-known in SIMPLE-type methods.
- In SIMPLE preconditioner, velocity relaxation has no effect on the convergence, therefore only pressure is under-relaxed by a factor $\omega$. $p=p^{*}+\omega \delta p$, where $\omega$ is chosen between 0 and 1.
- $\omega$ has no effect on convergence with SIMPLER due to extra pressure correction step.
- Faster convergence is achieved in some cases.
- Choice of $\omega$ is currently based on trial an error.


## Improvements in SIMPLE(R) preconditioners

## hSIMPLER preconditioner:

In hSIMPLER (hybrid SIMPLER), first iteration of Krylov method preconditioned with SIMPLER is done with SIMPLE and SIMPLER is employed afterwards.


- Faster convergence than SIMPLER
- Effective in the Stokes problem


## Improvements in SIMPLE(R) preconditioners

## MSIMPLER preconditioner:

Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.
LSC: $\hat{S} \approx-\left(B \hat{Q}_{u}^{-1} B^{T}\right)\left(B \hat{Q}_{u}^{-1} F \hat{Q}_{u}^{-1} B^{T}\right)^{-1}\left(B \hat{Q_{u}^{-1}} B^{T}\right)$
assuming $F \hat{Q_{u}^{-1}} \approx I$ (time dependent problems with a small time step)
$\hat{S}=-B \hat{Q_{u}^{-1}} B^{T}$
MSIMPLER uses this approximation for the Schur complement and updates scaled with $\hat{Q_{u}^{-1}}$.
-Convergence better than other variants of SIMPLE
-Cheaper than SIMPLER (in construction) and LSC (per iteration)

## Numerical Experiments

- Driven Cavity flow (2D)
- Backward facing step flow (2D and 3D)
- Q2-Q1 finite element discretization [Taylor, Hood - 1973]
- Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]
- GCR(20), Bi-CGSTAB, GMRES, IDR(s)
- The iteration is stopped if the linear systems satisfy $\frac{\left\|r^{k}\right\|_{2}}{\|b\|_{2}} \leq t o l$,
- Experiments done with IFISS (Matlab program) and SEPRAN (industrial FEM code)


## Numerical Experiments (SIMPLE type preconditioners)

Stokes backward facing step solved with preconditioned GCR(20) with accuracy of $10^{-6}$, PCG used as an inner solver (SEPRAN), Green: Low inner accuracy, Yellow: High inner accuracy

| Grid | SIMPLE | SIMPLER | hSIMPLER | MSIMPLER |
| :---: | :---: | :---: | :---: | :---: |
|  | iter. (ts) | iter. (ts) | iter. (ts) | iter. (ts) |
| $8 \times 24$ | $39(0.06)$ | $26(0.05)$ | $19(0.03)$ | $11(0.02)$ |
|  | $37(0.14)$ | $19(0.07)$ | $17(0.06)$ | $12(0.05)$ |
| $16 \times 46$ | $72(0.6)$ | $42(0.5)$ | $31(0.34)$ | $12(0.1)$ |
|  | $68(1.94)$ | $30(0.86)$ | $24(0.68)$ | $15(0.44)$ |
| $32 \times 96$ | $144(8.2)$ | NC | $44(5.97)$ | $16(0.9)$ |
|  | $117(34)$ | $114(32)$ | $37(10.6)$ | $20(5.75)$ |
| $64 \times 192$ | $256(93)$ | NC | $89(141)$ | $23(8.5)$ |
|  | $230(547)$ | NC | $68(161)$ | $25(60)$ |

## Numerical Experiments (SIMPLE type preconditioners)

SIMPLE with relaxation parameter



## Numerical Experiments (SIMPLE type preconditioners)

Effect of relaxation parameter: The Stokes problem solved in Q2-Q1 discretized driven cavity problem with varying $\omega: 32 \times 32$ grid (Left), $64 \times 64$ grid (Right).



## Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with preconditioned GCR(20) with accuracy of $10^{-6}$ (SEPRAN) using Q2-Q1 hexahedrons

| Grid | SIMPLE | LSC | MSIMPLER |  |
| :---: | :---: | :---: | :---: | :---: |
| iter. $\left(t_{s}\right) \frac{\mathrm{in} \text { in-it- }-p}{}$ |  |  |  |  |
| $8 \times 8 \times 16$ | $44(4) \frac{97}{342}$ | $16(1.9) \frac{41}{216}$ | $14(1.4) \frac{28}{168}$ |  |
| $16 \times 16 \times 32$ | $84(107)$ | $\frac{315}{1982}$ | $29(51) \frac{161}{1263}$ | $17(21) \frac{52}{766}$ |
| $24 \times 24 \times 48$ | $99(447)$ | $\frac{339}{3392}$ | $26(233) \frac{193}{2297}$ | $17(77) \frac{46}{1116}$ |
| $32 \times 32 \times 40$ | $132(972)$ | $\frac{574}{5559}$ | $37(379) \frac{233}{2887}$ | $20(143) \frac{66}{1604}$ |

## Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in solving the Navier-Stokes problem with preconditioned GCR(20) with accuracy of $10^{-2}$ (SEPRAN) using Q2-Q1 hexahedrons

| Re | LSC | MSIMPLER | SILU |
| :---: | :---: | :---: | :---: |
|  | GCR iter. $\left(t_{s}\right)$ | GCR iter. $\left(t_{s}\right)$ | Bi-CGSTAB iter. $\left(t_{s}\right)$ |
| $16 \times 16 \times 32$ |  |  |  |
| 100 | $173(462)$ | $96(162)$ | $321(114)$ |
| 200 | $256(565)$ | $145(223)$ | $461(173)$ |
| 400 | $399(745)$ | $235(312)$ | $768(267)$ |
| $32 \times 32 \times 40$ |  |  |  |
| 100 | $240(5490)$ | $130(1637)$ | $1039(1516)$ |
| 200 | NC | $193(2251)$ | $1378(2000)$ |
| 400 | $675(11000)$ | $295(2800)$ | $1680(2450)$ |

## Numerical Experiments (overall comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-Stokes problem is solved with accuracy $10^{-4}$, a linear system at each Picard step is solved with accuracy $10^{-2}$ using preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner solver in block preconditioners(SEPRAN)

| Re | LSC | MSIMPLER | SILU |
| :---: | :---: | :---: | :---: |
|  | GCR iter. $\left(t_{s}\right)$ | GCR iter. $\left(t_{s}\right)$ | Bi-CGSTAB iter. $\left(t_{s}\right)$ |
| $16 \times 16 \times 16$ |  |  |  |
| 20 | $30(20)$ | $20(16)$ | $144(22)$ |
| 50 | $57(37)$ | $37(24)$ | $234(35)$ |
| 100 | $120(81)$ | $68(44)$ | $427(62)$ |
| $32 \times 32 \times 32$ |  |  |  |
| 20 | $38(234)$ | $29(144)$ | $463(353)$ |
| 50 | $87(544)$ | $53(300)$ | $764(585)$ |
| 100 | $210(1440)$ | $104(654)$ | $1449(1116)$ |

## Numerical Experiments (IDR(s))

IDR(s): Top: $32 \times 32$, Bottom: $64 \times 64$ driven cavity Stokes flow problem





## Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioner: Comparison of iterative methods for increasing grid size for the driven cavity Stokes flow problem.

| Grid | Bi-CGSTAB | IDR(4) |
| :---: | :---: | :---: |
|  | Mat.-Vec. (ts) | Mat.-Vec. (ts) |
| $16 \times 16$ | $38(0.01)$ | $33(0.01)$ |
| $32 \times 32$ | $90(0.14)$ | $75(0.14)$ |
| $64 \times 64$ | $214(1.6)$ | $159(1.4)$ |
| $128 \times 128$ | $512(16)$ | $404(15)$ |
| $256 \times 256$ | $1386(183)$ | $1032(156)$ |

## Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for increasing stretch factor for the driven cavity Stokes problem.



## Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for the backward facing step Stokes problem.

| Grid | Bi-CGSTAB | IDR(s) |  |
| :---: | :---: | :---: | :---: |
|  | Mat.-Vec.(ts) | Mat.-Vec.(ts) | $s$ |
| $32 \times 96$ | $214(1.3)$ | $168(1.26)$ | 4 |
| $64 \times 96$ | NC | $597(7.7)$ | 4 |
| $96 \times 96$ | NC | $933(18)$ | 4 |
| $128 \times 96$ | NC | $1105(31)$ | 8 |

## Conclusions

- Relaxation parameter improves performance of the SIMPLE preconditioner.
- hSIMPLER shows faster convergence than SIMPLER.
- MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.
- In contrast with SIMPLER and hSIMPLER, SIMPLE and MSIMPLER are not sensitive to the accuracies that are used for the inner solvers.
- In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns both the number of outer iterations, inner iterations and CPU time.
- In our experiments, MSIMPLER proved to be cheaper than SILU, especially when the problem is solved with high accuracy.
- $\operatorname{IDR}(s)$ is faster and more robust than Bi -CGSTAB.


## References

* C. Vuik and A. Saghir and G.P. Boerstoel, "The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces," International Journal for Numerical methods in fluids, 33 pp. 1027-1040, 2000.
* M. ur Rehman and C. Vuik and G. Segal, "A comparison of preconditioners for incompressible Navier-Stokes solvers," International Journal for Numerical methods in fluids, 57, pp. 1731-1751, 2008.
$\star$ M. ur Rehman and C. Vuik and G. Segal, "SIMPLE-type preconditioners for the Oseen problem," International Journal for Numerical methods in fluids, To appear.
* Peter Sonneveld and Martin B. van Gijzen, "IDR(s): a family of simple and fast algorithms for solving large nonsymmetric linear systems," SIAM J. Sci. Comput., To appear.

