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Accuracy Enhancement and Filtering for Visualisation of Discontinuous Solutions

Motivation and Background
◦ Discontinuous Galerkin Method
◦ Post-Processing for Accuracy Enhancement
◦ Applications in Visualisation

Issues and challenges
◦ non-uniform mesh
◦ derivative post-processing
◦ ⇒ one-sided post-processing ⇐

Summary
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1D Discontinuous Galerkin Formulation

Define a Mesh and an Approximation Space:

Ij = (xj −
△xj

2
, xj +

△xj

2
), j = 1, · · · , N and Vh = {φ

(l)
j (x) ∈ P

k|Ij
, j = 1, · · · , N}

Consider ut + f(u)x = 0.

Weak Formulation: Find uh(x, t) ∈ Vh such that

Z

Ij

(uh)tvdx =

Z

Ij

f(uh)vxdx− f((uh)j+ 1
2

)vj+ 1
2

+ f((uh)j− 1
2

)vj− 1
2

for all v ∈ Vh.
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1D Discontinuous Galerkin Formulation

Numerical Scheme:

Z

Ij

(uh)tvdx =

Z

Ij

f(uh)vxdx− f̂j+1/2v
−

j+1/2
+ f̂j−1/2v

+
j−1/2

∀v ∈ Vh.

• Use upwind monotone flux

• Take v from inside the cell

DG solution: uh(x, t) =
∑k

l=0 u
(l)
i (t)φ

(l)
i (x) if x ∈ Ii.

15 December 2009 – p.4/43



Delft University of Technology

Can we improve an existing DG approximation?
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Post-Processing to Improve and Approximation

The post-processor:

u⋆ = K
2(k+1),k+1
h ⋆ uh

Why do we post-process?
◦ Errors in DG solution are highly oscillatory
◦ Post-processing filters out oscillations around the exact

solution
◦ Result is a solution that has increased smoothness and

accuracy
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Post-Processor

B. Cockburn, M. Luskin, C.-W. Shu, A. S üli, Math Comp. (2003)

◦ Discontinuous Galerkin approximation errors:

||uh − u||−l = O(h2k+1),

whereas in the L2−norm we have

||uh − u||2 = O(hk+1).

◦ Post-processor extracts this information.

u∗(x) = Kh ∗ uh

• Works for a locally uniform mesh:
−→ Translation invariant

−→ Post-Processor is local
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Negative Order Sobolev Norm

The negative order norm is given by

||u||−ℓ,Ω = sup
φ∈C∞

0

∫

Ω
u(x)φ(x)dx

||φ||ℓ,Ω
, ℓ ≥ 1,

which is just a seminorm divided by the usual Sobolev norm.

Example: For the function uN = sin(2πNx), Ω = (−1, 1), ℓ ≥ 1, the
negative order norm is

||uN ||−ℓ,Ω =
1

(2πN)ℓ

The negative order norm tells us that sin(2πNx) oscillates around zero
fairly regularly.
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Bramble & Schatz, Math. Comp. (1977)

Mock & Lax, Comm. Pure Appl. Math (1978)

Post-Processor Kernel

◦ Independent of the partial
differential equation.

◦ Applied only at the final time.
◦ Filters out oscillations in the

error.

Kernel Properties

◦ Compact Support ⇒
Computationally advantages

◦ Reproduces polynomials of
degree 2k by convolution. ⇒
Accuracy is not lost.

◦ Linear combination of
B-splines.
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Post-Processor

◦ Use Negative order norms ⇒ Tells us how oscillatory a function is
(difficult to compute).

◦ Use Convolution ⇒ “Filters” out these oscillations
◦ B-splines ⇒ Gives the convolution kernel nice properties.
◦ Make assumptions on the approximation and the mesh.

Result: A post-processor that filters out oscillations in the error and
improves the order of accuracy.
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Kernel Construction

Post-processed solution: u⋆(x) = K
2(k+1),k+1
h ⋆ uh.

K
2(k+1),k+1
h (x) =

1

h

k∑

γ=−k

c2(k+1),k+1
γ ψ(k+1)

(x

h
− γ

)

h = △xi for all i, and c2(k+1),k+1
γ ∈ R.

B-spline recursion formula:

ψ(1) = χ[−1/2,1/2],

ψ(k+1) =
1

k

»„

x+
k + 1

2

«

ψ(k)

„

x+
1

2

«

+

„

k + 1

2
− x

«

ψ(k)

„

x−
1

2

«–

, k ≥ 1.
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Convolution Coefficients

To find cγ , γ = −k, · · · , k :

Use K2(k+1),k+1
h ⋆ xm = xm for m = 1, · · · , x2k

2

6

6

6

6

6

6

6

4

R

ψ(k+1)(x− y − k) dy · · ·
R

ψ(k+1)(x− y + k) dy
R

ψ(k+1)(x− y − k)y dy · · ·
R

ψ(k+1)(x− y + k)y dy
R

ψ(k+1)(x− y − k)y2 dy · · ·
R

ψ(k+1)(x− y + k)y2 dy

· · · · · · · · ·
R

ψ(k+1)(x− y − k)y2k dy · · ·
R

ψ(k+1)(x− y + k)y2k dy

3

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

4

c−k

· · ·

c0

· · ·

ck

3

7

7

7

7

7

7

7

5

=
h

1 · · · xk+1 · · · x2k
iT
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Example: Kernel B-splines

Second Order Approximation

ψ(2)(x+ 1) ψ(2)(x) ψ(2)(x− 1)
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Kernel for Linear Approximation

Find cγ , γ = −1, 0, 1 : Use K4,2
h ⋆ p = p for p = 1, x, x2

−2.5 −2  −1.5 −1  −0.5 0   0.5 1   1.5 2   2.5 
−0.5

0   

0.5 

1   

1.5 

I
j

I
j−1I

j−2
I
j+1

I
j+2

K4,2(x) =
−1

12
ψ(2)(x− 1) +

7

6
ψ(2)(x) −

1

12
ψ(2)(x+ 1)
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Implementing the Post-processor

For element Ij = (xj−1/2,j+1/2) :

⇒ u⋆(x) =
∑

i

k∑

l=0

ul
i

k∑

γ=−k

c2(k+1),k+1
γ

∫

ψ(k+1)

(
x− y

h
− γ

)

φ
(l)
i (y) dy.

where i = j − p′, · · · , j + p′, p′ = ⌈ 3k+1
2 ⌉

k 1 2 3

p’ 2 3 5

Note: p′ is the number of elements needed on each side of the
element being post-processed.
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Example: Implementingk = 1 case

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

I
j

I
j−1 I

j+1

green line = DG

approximation on one

element.

blue line = kernel. The

kernel is introducing

smoothness at the element

boundaries.

Convolution Kernel:

K4,2(x) =
−1

12
ψ(2)(x− 1) +

7

6
ψ(2)(x) −

1

12
ψ(2)(x+ 1)

Discontinuous Galerkin Solution: uh(x) = u
(0)
j φ

(0)
j + u

(1)
j φ

(1)
j

on element Ij = (xj−1/2, xj+1/2).
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2−D Kernel

The 2−D case is simply a tensor product of the 1−D case.

Kernel:

Kh =
1

hxhy

k∑

γx=−k

k∑

γy=−k

cγxcγyψ
(k+1)

(
x

hx
− γx

)

ψ(k+1)

(
y

hy
− γy

)

We can use either a tensor product of polynomials, Qk - ({1, x, y, xy}),
or the usual polynomial basis, Pk - ({1, x, y}).
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1 −D Variable Coefficient Equation

Ryan, Shu, Atkins, SISC (2005)

uh(x, 12.5) u∗(x, 12.5)

mesh L2 error order L2 error order

P
1

10 1.83E-02 — 7.82E-02 —

20 4.35E-03 2.07 1.08E-03 2.86

40 1.07E-03 2.03 1.39E-04 2.96

P
2

10 8.61E-04 — 1.34E-04 —

20 1.07E-04 3.01 2.34E-06 5.84

40 1.34E-05 3.00 4.55E-08 5.69

ut + (au)x = f

a(x) = 2 + sin(x)

u(x, 0) = sin(3x)

u(0, t) = u(2π, t)
T = 12.5
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Applications in Filtering for Visualisation

Streamline Calculation: Filtering Entire Field

◦ Obtain numerical approximation
◦ Post-Process the approximation
◦ We can then choose our time integrator for the streamline

calculation (such as RK-4)

d

dt
~x(t) = ~F (~x(t))

~x(t = 0) = ~x0

◦ The post-processor increases smoothness of the approximation
to help obtain the correct streamline.
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Applications in Filtering for Streamline Visualisation

Example Field: Scheuerman, Tricoche, and Hagen, IEEE Vis (1999).

Steffan, Curtis, Kirby, and Ryan, IEEE-TVCG (2008).

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

(u, v)T = ~F (x, y), Ω = [−1, 1] × [−1, 1]

z = x+ ıy

u = Re(r)

v = −Im(r).

r = (z − (0.74 + 0.35ı))(z − (0.68 − 0.59ı))

(z − (−0.11 − 0.72ı))(z̄ − (−0.58 + 0.64

(z̄ − (0.51 − 0.27ı))(z̄ − (−0.12 + 0.84
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Applications in Filtering for Visualization

Streamline Calculation: Filtering Entire Field

U component

L2 error L∞ error

N BEFORE AFTER BEFORE AFTER

P
1

20 1.2642E-02 4.8779E-04 1.3028E-01 2.0830E-03

40 4.4291E-03 3.8597E-05 4.8341E-02 1.7929E-04

80 1.3054E-03 2.7114E-06 1.7165E-02 1.3033E-05

P
2

20 2.2576E-04 6.8329E-06 1.8986E-03 1.3061E-05

40 5.0880E-05 1.4086E-07 5.4698E-04 2.6435E-07

80 8.4056E-06 2.4689E-09 9.9905E-05 4.6007E-09
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Applications in Filtering for Visualization

Streamline Calculation: Filtering Entire Field

Limitations:

◦ Uniform quadrilateral mesh · · · What about 3 −D?
⇒ For 1 & 2-D use a characteristic length.⇐

◦ Higher order streamline integrator - need derivative information.
→ Use smoother splines.

◦ Maintaining Boundary Values.
◦ Post-Processing entire field can be expensive (R.M. Kirby, Utah).
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Nonuniform Mesh: Characteristic Length

Curtis, Kirby, Ryan, and Shu, SISC (2007).

Post-processing solution on cell Ij.

• Let L be the characteristic length used in the
post-processor, where L = maxi=1,··· ,N △xi.

CL(i, l, k, x) =
1

L

Z

Ii+j

ψ(k+1)

„

y − x

L
− γ

« „

y − xi+j

△xi+j

«l

dy,

• Find post-processed solution on Ij :

u⋆(x) =

p′
∑

i=−p′

k∑

l=0

u
(l)
(i+j)CL(i, l, k, x)
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Applications in Filtering for Visualization

Streamline Calculation: Filtering Entire Field

Limitations:

◦ Uniform quadrilateral mesh · · · What about 3 −D?
→ For 1 & 2-D use a characteristic length.

◦ ⇒Higher order streamline integrator - need derivative
information.⇐
→ Use smoother splines.

◦ Maintaining Boundary Values.
◦ Post-Processing entire field can be expensive (R.M. Kirby, Utah).
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Accuracy Improvement for Derivatives

Two methods
◦ Calculating the derivative of the post-processing polynomial

directly.
Ryan, Shu, Atkins, SISC (2005)

⇒ O(h2k+2−d)

◦ ⇒ Using higher-order B-splines in the convolution kernel together
with divided differences of the numerical solution. ⇐
Thomee, Math. Comp. (1977)

Cockburn & Ryan, JCP (2009)

⇒ O(h2k+1)
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Accuracy Improvement for Derivatives:Higher Order Splines

dsu∗

dxs
(x) =

1

h

∫ ∞

−∞

K̃s,2(k+1),k+1

(
y − x

h

)

∂s
huh(y, T ) dy.

for the sth derivative.

• Uses higher order B-splines than post-processed solution.
• Kernel has a wider support.

Kernel:

K̃s,2(k+1),k+1 =
k∑

γ=−k

c̃γ ψ
(k+s+1)(x− γ).
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Applications in Filtering for Visualization

Streamline Calculation: Filtering Entire Field

Limitations:

◦ Uniform quadralateral mesh · · · What about 3 −D?
→ For 1 & 2-D use a characteristic length.

◦ Higher order streamline integrator - need derivative information.
→ Use smoother splines.

◦ ⇒ Maintaining Boundary Values. ⇐
◦ Post-Processing entire field can be expensive (R.M. Kirby, Utah).
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(Old) Left Post-Processor

Ryan and Shu, MAA (2003)

u⋆(x) =

0
X

j=−2p′

k
X

l=0

u
(l)
i+j C(j, l, k, x)

where p′ = ⌈(3k + 1)/2⌉ ≤ 2k

and u⋆ ∈ P2k+1

C(j, l, k, x) =
1

h

−k
X

γ=−2k−1

c
2(k+1),k+1
γ

Z 1
2
−(ξi+γ)

−
1
2
−(ξi+γ)

ψ(k+1) (η) (ξi + η + γ − j)l dy

For k = 1 :

K(x) =
11

12
ψ(2)(x+ 3) −

17

6
ψ(2)(x+ 2) +

35

12
ψ(2)(x+ 1)
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Old One-Sided Post-Processing: :ut + ux = 0, periodic BC

Problem 1: discontinuities are not eliminated (stair-stepping)
Problem 2: the errors at the boundary can be worse than before
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New One-Sided Post-Processing: :ut + ux = 0, periodic BC

Problem 1: not all discontinuities are eliminated (stair-stepping)
Problem 2: the errors at the boundary can be worse than before
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These problems can be solved through a new type of one-sided
post-processing (following slides)
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New One-Sided Post-Processing

The discontinuities can be avoided by using kernel nodes that depend
continuously on the evaluation point through the shift function λ(x̄):

u⋆
h(x̄) =

2k∑

γ=0

cγ(x̄)

∫

I

ψ
(k+1)
h

(
x− (λ(x̄) + γ)

︸ ︷︷ ︸

kernel node

)
uh(x̄− x) dx.

van Slingerland, Ryan, & Vuik (2009).
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New One-Sided Post-Processing

The discontinuities can be avoided by using kernel nodes that depend
continuously on the evaluation point through the shift function λ(x̄):

u⋆
h(x̄) =

2k∑

γ=0

cγ(x̄)

∫

I

ψ
(k+1)
h

(
x− (λ(x̄) + γ)

︸ ︷︷ ︸

kernel node

)
uh(x̄− x) dx.

Three examples (the kernel nodes are indicated by the red circles):

λ(x̄) = −k

−2 −1 0 1 2

0

1

Symmetric kernel of order 2

x

Use in the domain interior.

λ(x̄) = k+1
2

0 1 2 3 4
−3

−2

−1

0

1

2

3
Right−sided kernel of order 2

x

Use at the left boundary

λ(x̄) = −0.5

−1.5 −0.5 0.5 1.5 2.5

0

1
Partly right−sided kernel of order 2

x

Use near the left boundary
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New One-Sided Post-Processing

The discontinuities can be avoided by using kernel nodes that depend
continuously on the evaluation point through the shift function λ(x̄):

u⋆
h(x̄) =

2k∑

γ=0

cγ(x̄)

∫

I

ψ
(k+1)
h

(
x− (λ(x̄) + γ)

︸ ︷︷ ︸

kernel node

)
uh(x̄− x) dx.

−2k−(k+1)/2

−k

(k+1)/2
Shift function λ(x)

x
left−sided

partly left−sided

symmetric

right−sided

partly right−sided
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New One-Sided Post-Processing

The accuracy near the boundary can be improved by using extra
kernel nodes in that region.

u⋆
h(x̄) = θ(x̄) u⋆

h,2k+1(x̄)
︸ ︷︷ ︸

filtering with 2k + 1 nodes

+(1 − θ(x̄)) u⋆
h,4k+1(x̄)

︸ ︷︷ ︸

filtering with 4k + 1 nodes
︸ ︷︷ ︸

smooth convex combination

• In the interior: θ(x̄) = 1 (old filter suffices)

• Near the boundary: θ(x̄) = 0 (extra accuracy through extra nodes)
• Transition regions: choose θ smooth
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New One-Sided Post-Processing:ut + ux = 0, periodic BC

The new post-processor improves both the convergence rate and the
absolute value of the errors for a problem with a periodic BC
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New One-Sided Post-Processing:ut + ux = 0, periodic BC

The new post-processor improves both the convergence rate and the
absolute value of the errors for a problem with a periodic BC
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New One-Sided Post-Processing:ut + ux = 0, periodic BC

The new post-processor improves both the convergence rate and the
absolute value of the errors for a problem with a periodic BC

Before After (Old) After (New)

mesh L2-error order L2-error order L2-error order

Polynomial Degree k = 2

20 2.683e-04 - 4.003e-03 - 1.301e-05 -

40 3.352e-05 3.00 2.108e-04 4.25 3.767e-07 5.11

80 4.190e-06 3.00 5.464e-06 5.27 1.056e-08 5.16

160 5.238e-07 3.00 1.254e-07 5.45 3.090e-10 5.10

Polynomial Degree k = 3

20 5.176e-06 - 1.304e-04 - 3.757e-07 -

40 3.236e-07 4.00 4.712e-06 4.79 6.634e-10 9.15

80 2.023e-08 4.00 3.406e-08 7.11 2.957e-12 7.81

160 1.264e-09 4.00 1.999e-10 7.41 1.287e-14 7.84
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New One-Sided Post-Processing:ut + ux = 0, Dirichlet BC

The new post-processor improves both the convergence rate and the
absolute value of the errors for a problem with a Dirichlet BC
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New One-Sided Post-Processing:ut + ux = 0, Dirichlet BC

The new post-processor improves both the convergence rate and the
absolute value of the errors for a problem with a Dirichlet BC

Before After (Old) After (New)

mesh L2-error order L2-error order L2-error order

Polynomial Degree k = 2

20 2.681e-04 - 4.003e-03 - 6.984e-06 -

40 3.352e-05 3.00 2.108e-04 4.25 1.850e-07 5.24

80 4.190e-06 3.00 5.464e-06 5.27 4.798e-09 5.27

160 5.238e-07 3.00 1.254e-07 5.45 1.498e-10 5.00

Polynomial Degree k = 3

20 5.176e-06 - 1.304e-04 - 3.751e-07 -

40 3.236e-07 4.00 4.712e-06 4.79 6.396e-10 9.20

80 2.023e-08 4.00 3.406e-08 7.11 2.867e-12 7.80

160 1.264e-09 4.00 1.999e-10 7.41 3.079e-14 6.54
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New One-Sided Post-Processing:ut + aux = 0, a discontinuous

For this problem with two stationary shocks, the post-processor
requires a sufficiently fine mesh
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New One-Sided Post-Processing:ut + aux = 0, a discontinuous

For this problem with two stationary shocks, the post-processor
requires a sufficiently fine mesh

Before After (Old) After (New)

mesh L2-error order L2-error order L2-error order

Polynomial Degree k = 2

20 3.646e-02 - 6.808e+00 - 5.709e-01 -

40 2.052e-03 4.15 1.672e-01 5.35 1.249e-03 8.84

80 2.173e-04 3.24 6.027e-03 4.79 4.166e-05 4.91

160 2.682e-05 3.02 8.414e-05 6.16 1.181e-06 5.14

Polynomial Degree k = 3

20 1.085e-03 - 3.579e+00 - 2.270e-01 -

40 6.602e-05 4.04 1.865e-02 7.58 2.640e-03 6.43

80 4.132e-06 4.00 6.502e-04 4.84 5.205e-06 8.99

160 2.584e-07 4.00 2.623e-06 7.95 4.670e-09 10.12
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Summary

◦ Using B-splines allows us to induce smoothness on the DG field and enhance
accuracy.

◦ We can obtain this improvement from order k+1 to order 2k+1 for smoothly varying
meshes as well as derivatives of the DG solution.

◦ Recent extensions allow us to have the improvement in accuracy near the
boundaries as well.
• The kernel is adjusted according to the point we would like to post-process.
• Near the boundary, we use more kernel nodes.

◦ We can use this post-processing technique as a visualisation tool to maintain more
accurate streamlines.
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