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Introduction

Extrusion process Mantle convection
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Incompressible Stokes Equation

dive = pf In ()

1
oc=—pl+ i,u(Vu + Vu')

Vaua=0 In €.

u is the fluid velocity vector, p is the pressure field
1 > 0 1s the variable dynamic viscosity coefficient
p iIs the variable density coefficient
Q) Cc R? "3 is a bounded domain with the boundary condition:
ou

u=w on 0Qp, v— —np=0 on O0Ny.
on
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Linear system

Matrix form after discretization by FEM:

F BT\ |u f
B 0] |p g

where FF € R"*" B e R™", feR*andm <n

® [ = vAin Stokes problem, A is vector Laplacian matrix
® Sparse linear system, Symmetric indefinite (Stokes problem)

® Saddle point problem having large number of zeros on the main diagonal
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Block preconditioners

F BT I 0 F 0 I M;'BT
A= ﬁbDbUb = = 1
B 0 BM ' T 0 S 0 I

M; =M, =FandS=—-BF 1BT isthe Schur-complement matrix.

F BT F 0
Uy = Dyldy = . , Lyt = Ly Dy = |-
0 S B S

® Pressure Mass Matrix (PMM) [Bramble and Pasciak, 1988]
S =—1/vQ,, Q, is the pressure mass matrix

® Pressure convection diffusion (PCD) [Kay et al, 2002]
S = _A'pr_lQp

® | east squares commutator (LSC) [Elman et al, 2002]
S = —(BQ.'BT)(BQy'FQ,'BT)~\(BQ, ' BT),
(Q+ 1s the velocity mass matrix
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SIMPLE-type preconditioners

SIMPLER [Vuik et al, 2000]
z=U. 'L, 'randthen z = z + U, "L, ' (r — Az) where

M, = M, = D, D = diag(F)and S = —BD~!BT

MSIMPLER [Rehman etal, 2009]

D = Q., which is the velocity mass matrix.
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The Schur method

® Instead of solving Az = b, the factored system £, DUz = b is solved.
® Mj=M,=F

® |nstead of approximating S in D, the matrix vector product BF~1BTpis
computed in each step of the Krylov method.

® GCR is employed as it allows a variable preconditioner.

® The pressure mass matrix is used as preconditioner for the Schur-complement
system.

® Efficient solver for the velocity subsystem is required. We use an Algebraic
Multigrid Method (ML).
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Scaling |

The pressure-mass matrix scaling
The standard pressure-mass matrix is defined independently of the viscosity

(@p)i,j Z/Q@'%'dﬁa (1)

In case of variable viscosity, we consider two alternatives:

1. Explicit scaling:
Qpe = S, 1Q,S,; 1, whereS, = diag(\v/v)

2. Implicitly scaling: This is done at the time of formation of the pressure-mass
matrix. In this case, the smaller value of v will dominate the definition of Q,,; (due
to its inversion) at the nodes that are shared by more elements.
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Scaling |

System matrix scaling

® In high viscosity contrast problem, if we use convergence criteria based on the Lo norm, some
preconditioners e.g. PMM, lead to fewer iterations. However, an inaccurate solution is obtained with

this convergence criteria.

® fweusea preconditioner for the Schur-complement that involves the diagonal of the velocity matrix
D_l, the error in the iterative method using a direct method for the subsystems becomes small.
This has been verified for LSCp, BD~! BT and SIMPLE.

® We use S, as scaling matrix given:

Vdiag(F) 0

Sm —
0 Vdiag(BD-1BT)

® We solve S;;tAS S x = S5t

® Convergence criteria are now based on the scaled L, norm
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Numerical Experiments (The Stokes problem, constant V)

The Stokes driven cavity flow problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem solves and ICCG(0) for the Schur subsystem solves. Solution

accuracy is 1076,

Preconditioner Grids
32 X 32 64 x 64 128 x 128 256 x 256

iter.(time in seconds)

PMM 11(1.4) 10(5.6)  9(23.6) 9(97)
LSC 10(1.38) 13(8.3)  17(54) 22(319)
MSIMPLER | 13(1.5)  16(8) 22(50) 29(300)
Schur(1) 6(3) 5(10.2) 5(46) 6(221)
Schur(6) 1(2) 1(10.6) 1(53) 1(251)
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Numerical Experiments (The Stokes problem, variable V)

Extrusion problem
A round aluminum rod is heated and pressed
through a die.

LEVELS

35,682

33,902
32122

The viscosity model used describes

the viscosity as function of shear stress
and temperature, which are highest

at the die where the aluminum is

forced to flow into a much smaller region.
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Numerical Experiments (The Stokes problem, variable V)

The variable-viscosity Stokes problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem and ICCG(0) (PMM, Schur method) or AMG/CG (LSC, LSCp,
MSIMPLER) for the Schur subsystem. Solution accuracy is 10796,

Grid | | Levels/N PMM LSC MSIMPLER Schur
tol — 103 103 | 10—1, 103 106
iter.(time in seconds)

66k 3/394 19(51) 11(35) 15(35) 1(104)
195k 4/152 18(183) 13(188) 19(138) 1(370)
390k 5/300 18(429) 14(480) 19(360) 1(869)
595k 5/408 19(743) 15(871) 19(693) | 1(1478)
843k 6/112 | 19(1229) | 15(1406) 21(989) | 1(2686)
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Numerical Experiments (The Stokes problem, jumping V)

A 2D geodynamics test model called SINKER

Low Viscosity Region (LVR) has density p; = 1 and viscosity v; = 1,
High Viscosity Region (HVR) has density po» = 2 and viscosity vo = (1, 103, or 10°).

01 (1,1)

LVR

0,0 (1,0
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Numerical Experiments (The Stokes problem, jumping V)

Iterative solution of the Stokes problem with SINKER configuration , accuracy = 1076,

Error = ||pezact — PPMM, LSCp, Schurll2

v PMM LSCp Schur
iter. Error iter. Error iter. (inner) Error

30 x 30

vo =100 | 12 9x107% | 26 7x 106 2(18) 2 x 108

vo =103 | 12 2x107° | 26 3 x107° 2(20) 2 x 1010

vo =10 | 11 5x107% | 24 1x10°© 2(16) 2 x 10710
60 X 60

vo =109 | 13 8x1073 | 40 6x107° 2(19) 5x 1078

vo =103 | 13 3x107° | 40 5x10°° 2(20) 3 x 1079

vo =101 | 13 1x107% | 41 3x10°6 2(18) 4 x 10—10
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Scaling independent to the number grid points

Solution of the velocity system with CG preconditioned with one AMG V-cycle

10

number of CG iterations
~
I

1.0x10’
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number of degrees of freedom

1.0x10°
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Scaling independent to the number of cores

One CG iteration One AMG V-cycle

0.4 | I|III|IIII|IIII|IIIIIIIIIIIIIIII 6 T L

—¢ 180.000 degrees of freedom per core
[—# 400.000 degrees of freedom per core
00 720.000 degrees of freedom per core )

—¢ 180.000 degrees of freedom per core
4—4 400.000 degrees of freedom per core
00720000 degrees of freedom per core

walltime (sec.)
1
walltime (sec.)
o

y

0 | I|III|IIII|IIII|IIII|IIII|IIII|IIII 0 | I|III|IIII|IIII|IIII|IIII|IIII|IIII

1 2 4 8 16 k) 64 18 16 512 1 4 8 16 k) 64 128 256 512
number of processing cores number of processing cores

o
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Conclusions

* PMM and Schur show h-independent convergence for
all types of viscosity configurations and the
convergence is similar.

* |n high viscosity contrast problems the Schur method
IS the best preconditioner.

* The proposed solver is independent of the grid size,
jump in the viscosity, and the number of computer
cores.

* |f the solver in your software (package) is older than 10
years, please update lIt.
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