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Introduction

Extrusion process Mantle convection
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Incompressible Stokes Equation

divσ = ρf in Ω

σ = −pI +
1

2
µ(∇u + ∇u

T )

∇.u = 0 in Ω.

u is the fluid velocity vector, p is the pressure field
µ > 0 is the variable dynamic viscosity coefficient
ρ is the variable density coefficient
Ω ⊂ R

2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .
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Linear system

Matrix form after discretization by FEM:





F BT

B 0









u

p



 =





f

g





where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = νA in Stokes problem, A is vector Laplacian matrix

• Sparse linear system, Symmetric indefinite (Stokes problem)

• Saddle point problem having large number of zeros on the main diagonal
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Block preconditioners

A = LbDbUb =
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Ml = Mu = F and S = −BF−1BT is the Schur-complement matrix.

Ubt = DbUb =

2

4

F BT

0 Ŝ

3

5 , Lbt = LbDb =

2

4

F 0

B Ŝ

3

5 .

• Pressure Mass Matrix (PMM) [Bramble and Pasciak, 1988]
Ŝ = −1/νQp, Qp is the pressure mass matrix

• Pressure convection diffusion (PCD) [Kay et al, 2002]
Ŝ = −ApF−1

p Qp

• Least squares commutator (LSC) [Elman et al, 2002]
Ŝ = −(BQ−1

u BT )(BQ−1
u FQ−1

u BT )−1(BQ−1
u BT ),

Qu is the velocity mass matrix
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SIMPLE-type preconditioners

SIMPLER [Vuik et al, 2000]

z = U−1

bt
L−1

b
r and then z = z + U−1

b
L−1

bt
(r −Az) where

Ml = Mu = D, D = diag(F ) and Ŝ = −BD−1BT

MSIMPLER [Rehman etal, 2009]

D = Qu, which is the velocity mass matrix.
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The Schur method

• Instead of solving Ax = b, the factored system LbDbUbx = b is solved.

• Ml = Mu = F

• Instead of approximating S in Db, the matrix vector product BF−1BT p is
computed in each step of the Krylov method.

• GCR is employed as it allows a variable preconditioner.

• The pressure mass matrix is used as preconditioner for the Schur-complement
system.

• Efficient solver for the velocity subsystem is required. We use an Algebraic
Multigrid Method (ML).
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Scaling I

The pressure-mass matrix scaling
The standard pressure-mass matrix is defined independently of the viscosity

(Qp)i,j =

Z

Ω

φiφjdΩ, (1)

In case of variable viscosity, we consider two alternatives:

1. Explicit scaling:

Qpe = S−1
v QpS−1

v , whereSv = diag(
√

ν)

2. Implicitly scaling: This is done at the time of formation of the pressure-mass
matrix. In this case, the smaller value of ν will dominate the definition of Qpi (due
to its inversion) at the nodes that are shared by more elements.
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Scaling II

System matrix scaling

• In high viscosity contrast problem, if we use convergence criteria based on the L2 norm, some

preconditioners e.g. PMM, lead to fewer iterations. However, an inaccurate solution is obtained with

this convergence criteria.

• If we use a preconditioner for the Schur-complement that involves the diagonal of the velocity matrix

D−1, the error in the iterative method using a direct method for the subsystems becomes small.

This has been verified for LSCD , BD−1BT and SIMPLE.

• We use Sm as scaling matrix given:

Sm =

2

4

p

diag(F ) 0

0
p

diag(BD−1BT )

3

5 .

• We solve S−1
m AS−1

m Smx = S−1
m b

• Convergence criteria are now based on the scaled L2 norm
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Numerical Experiments (The Stokes problem, constant ν)

The Stokes driven cavity flow problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem solves and ICCG(0) for the Schur subsystem solves. Solution
accuracy is 10−6.

Preconditioner Grids

32 × 32 64 × 64 128 × 128 256 × 256

iter.(time in seconds)

PMM 11(1.4) 10(5.6) 9(23.6) 9(97)

LSC 10(1.38) 13(8.3) 17(54) 22(319)

MSIMPLER 13(1.5) 16(8) 22(50) 29(300)

Schur(1) 6(3) 5(10.2) 5(46) 6(221)

Schur(6) 1(2) 1(10.6) 1(53) 1(251)
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Numerical Experiments (The Stokes problem, variable ν)

Extrusion problem
A round aluminum rod is heated and pressed
through a die.

The viscosity model used describes
the viscosity as function of shear stress
and temperature, which are highest
at the die where the aluminum is
forced to flow into a much smaller region.
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Numerical Experiments (The Stokes problem, variable ν)

The variable-viscosity Stokes problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem and ICCG(0) (PMM, Schur method) or AMG/CG (LSC, LSCD ,
MSIMPLER) for the Schur subsystem. Solution accuracy is 10−6.

Grid ↓ Levels/N PMM LSC MSIMPLER Schur

tol −→ 10−3 10−3 10−1, 10−3 10−6

iter.(time in seconds)

66k 3/394 19(51) 11(35) 15(35) 1(104)

195k 4/152 18(183) 13(188) 19(138) 1(370)

390k 5/300 18(429) 14(480) 19(360) 1(869)

595k 5/408 19(743) 15(871) 19(693) 1(1478)

843k 6/112 19(1229) 15(1406) 21(989) 1(2686)



November 24, 2009 13

Numerical Analysis Group, TU Delft

Numerical Experiments (The Stokes problem, jumping ν)

A 2D geodynamics test model called SINKER

Low Viscosity Region (LVR) has density ρ1 = 1 and viscosity ν1 = 1,
High Viscosity Region (HVR) has density ρ2 = 2 and viscosity ν2 = ( 1, 103, or 106).
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Numerical Experiments (The Stokes problem, jumping ν)

Iterative solution of the Stokes problem with SINKER configuration , accuracy = 10−6.
Error = ‖pexact − pP MM, LSCD , Schur‖2

ν PMM LSCD Schur

iter. Error iter. Error iter. (inner) Error

30 × 30

ν2 = 106 12 9 × 10−4 26 7 × 10−6 2(18) 2 × 10−8

ν2 = 103 12 2 × 10−5 26 3 × 10−6 2(20) 2 × 10−10

ν2 = 101 11 5 × 10−6 24 1 × 10−6 2(16) 2 × 10−10

60 × 60

ν2 = 106 13 8 × 10−3 40 6 × 10−5 2(19) 5 × 10−8

ν2 = 103 13 3 × 10−5 40 5 × 10−6 2(20) 3 × 10−9

ν2 = 101 13 1 × 10−6 41 3 × 10−6 2(18) 4 × 10−10
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Scaling independent to the number grid points

Solution of the velocity system with CG preconditioned with one AMG V-cycle
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Scaling independent to the number of cores

One CG iteration One AMG V-cycle
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Conclusions

• PMM and Schur show h-independent convergence for
all types of viscosity configurations and the
convergence is similar.

• In high viscosity contrast problems the Schur method
is the best preconditioner.

• The proposed solver is independent of the grid size,
jump in the viscosity, and the number of computer
cores.

• If the solver in your software (package) is older than 10
years, please update it.
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