Complex shifted-Laplace preconditioners for the Helmholtz equation

C. Vuik, Y.A. Erlangga, M.B. van Gijzen, and C.W. Oosterlee

Delft Institute of Applied Mathematics

c.vuik@tudelft.nl

http://ta.twi.tudelft.nl/users/vuik/

Ninth Copper Mountain Conference on Iterative Methods,

April 2-7, 2006, USA

Contents

- 1. Introduction
- 2. Spectrum of shifted Laplacian preconditioners
- 3. Shift with an SPD real part
- 4. General shift
- 5. Numerical experiments
- 6. Conclusions

Wim Mulder, René Edouard Plessix, Paul Urbach, Alex Kononov and Dwi Riyanti

Financially supported by the Dutch Ministry of Economic Affairs: project BTS01044

1. Introduction

The Helmholtz problem is defined as follows

$$egin{aligned} &-\partial_{xx}u - \partial_{yy}u - z_1k^2(x,y)u = f, & ext{ in } & \Omega, \ & ext{Boundary conditions} & ext{ on } & \Gamma = \partial\Omega, \end{aligned}$$

where:

- $z_1 = \alpha_1 + i\beta_1$ and k(x, y) is the wavenumber
- for "solid" boundaries: Dirichlet/Neumann
- for "fictitious" boundaries: Sommerfeld $\frac{du}{dn} iku = 0$
- Perfectly Matched Layer (PML)
- Absorbing Boundary Layer (ABL)

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, $O(h^2)$.

Linear system

$$Ax = b, \ A \in \mathbb{C}^{N \times N}, \ b, x \in \mathbb{C}^N,$$

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, $O(h^2)$.

Linear system

$$Ax = b, \ A \in \mathbb{C}^{N \times N}, \ b, x \in \mathbb{C}^N,$$

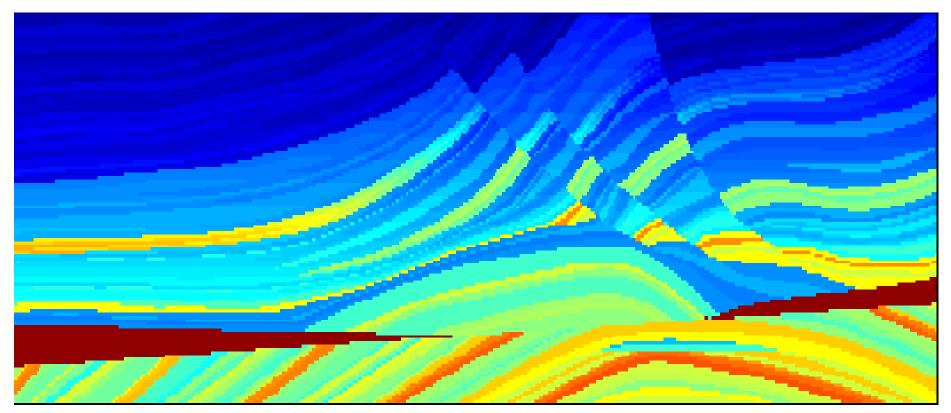
A is a sparse, highly indefinite matrix for practical values of k. Special property $A = A^T$.

For high resolution a very fine grid is required: 30 - 60 grid-points per wavelength (or $\approx 5 - 10 \times k$) $\rightarrow A$ is extremely large!

TUDelft

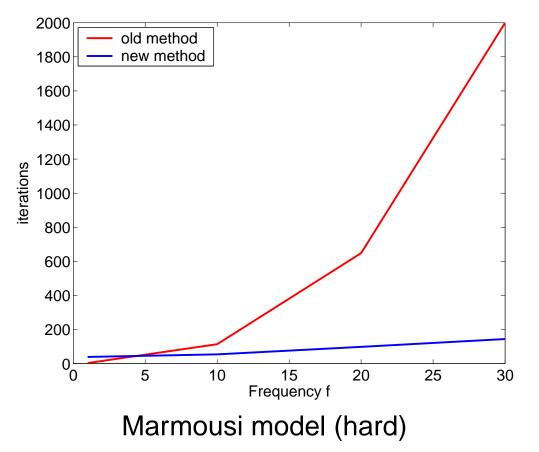
- $A \in \mathbb{C}^{N \times N}$ is sparse
- wavenumber k and grid size N are very large
- wavenumber *k* varies discontinuously
- real parts of the eigenvalues of *A* are positive and negative

Application: geophysical survey



Marmousi model (hard)

Application: geophysical survey



TUDelft

Operator based preconditioner *P* is based on a discrete version of

$$-\partial_{xx}u - \partial_{yy}u - (\alpha_2 + i\beta_2)k^2(x, y)u = f, \text{ in } \Omega.$$

appropriate boundary conditions

Matrix P^{-1} is approximated by an inner iteration process.

$\alpha_2 = 0$	$\beta_2 = 0$	Laplacian	Bayliss and Turkel, 1983
$\alpha_2 = -1$	$\beta_2 = 0$	Definite Helmholtz	Laird, 2000
$\alpha_2 = 0$	$\beta_2 = -1$	Complex	Erlangga, Vuik and
$\alpha_2 = 1$	$\beta_2 = -0.5$	'Optimal'	Oosterlee, 2004, 2006

TUDelft

After discretization we obtain the (un)damped Helmholtz operator

$$L-z_1M,$$

where L and M are SPD matrices and $z_1 = \alpha_1 + i\beta_1$.

The preconditioner is then given by

$$L-z_2M,$$

where $z_2 = \alpha_2 + i\beta_2$ is chosen such that

- systems with the preconditioner are easy to solve,
- the outer Krylov process is accelerated significantly.

References: Manteuffel, Parter, 1990; Yserentant, 1988

Since *L* and *M* are SPD we have the following eigenpairs

 $Lv_j = \lambda_j M v_j$, where, $\lambda_j \in \mathbb{R}^+$

The eigenvalues σ_j of the preconditioned matrix satisfy

$$(L - z_1 M)v_j = \sigma_j (L - z_2 M)v_j.$$

Theorem 1 Provided that $z_2 \neq \lambda_j$, the relation

$$\sigma_j = rac{\lambda_j - z_1}{\lambda_j - z_2}$$
 holds.

TUDelft

Theorem 2

If $\beta_2 = 0$, the eigenvalues $\sigma_r + i\sigma_i$ are located on the straight line in the complex plane given by

$$\beta_1 \sigma_r - (\alpha_1 - \alpha_2) \sigma_i = \beta_1.$$

Theorem 2

If $\beta_2 = 0$, the eigenvalues $\sigma_r + i\sigma_i$ are located on the straight line in the complex plane given by

$$\beta_1 \sigma_r - (\alpha_1 - \alpha_2) \sigma_i = \beta_1.$$

Theorem 3

If $\beta_2 \neq 0$, the eigenvalues $\sigma_r + i\sigma_i$ are on the circle in the complex plane with center *c* and radius *R*:

$$c = \frac{z_1 - \bar{z}_2}{z_2 - \bar{z}_2}, \quad R = \left| \frac{z_2 - z_1}{z_2 - \bar{z}_2} \right|.$$

Note that if $\beta_1\beta_2 > 0$ the origin is not enclosed in the circle.

TUDelft

Using Sommerfeld boundary conditions, it impossible to write the matrix as $L - z_1 M$ where, L and M are SPD.

Generalized matrix

$$L + \mathsf{i}C - z_1 M,$$

where L, M, and C are SPD. Matrix C contains Sommerfeld boundary conditions (or other effects: PML, ABL).

Use as preconditioner

$$L + \mathbf{i}C - z_2 M.$$

TUDelft

Spectrum of shifted Laplacian preconditioners

Suppose

$$(L + \mathsf{i}C)v = \lambda_C M v$$

then

$$(L + \mathsf{i}C - z_1M)v = \sigma_C(L + \mathsf{i}C - z_2M)v.$$

Theorem 4

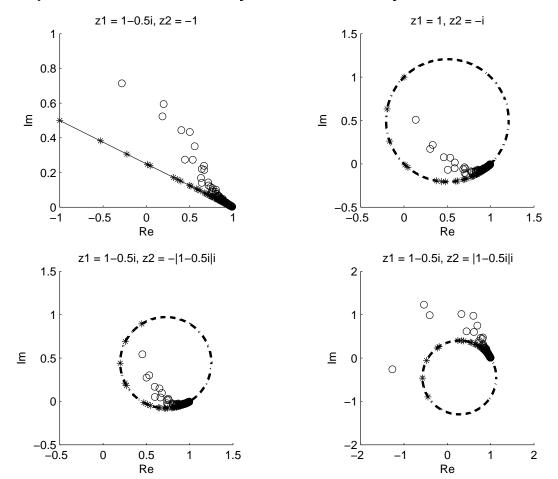
Let $\beta_2 \neq 0$ then the eigenvalues σ_C are in or on the circle with center

$$c = \frac{z_1 - \bar{z}_2}{z_2 - \bar{z}_2}$$
 and radius $R = \left| \frac{z_2 - z_1}{z_2 - \bar{z}_2} \right|$.

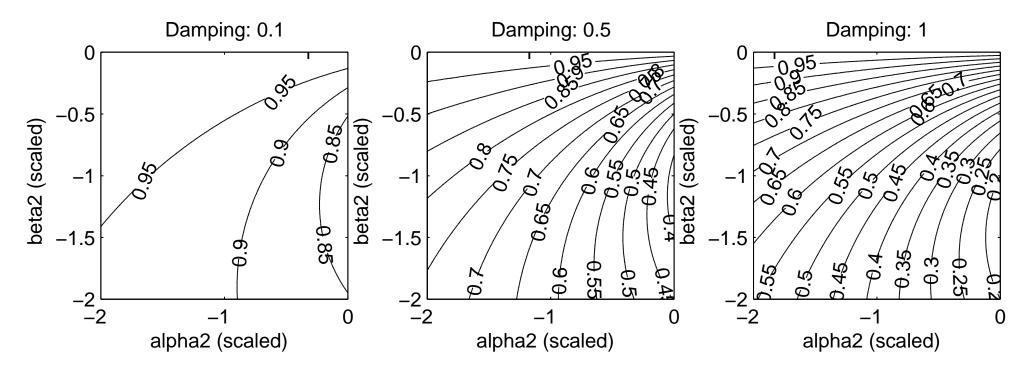
TUDelft

3. Shift with an SPD real part

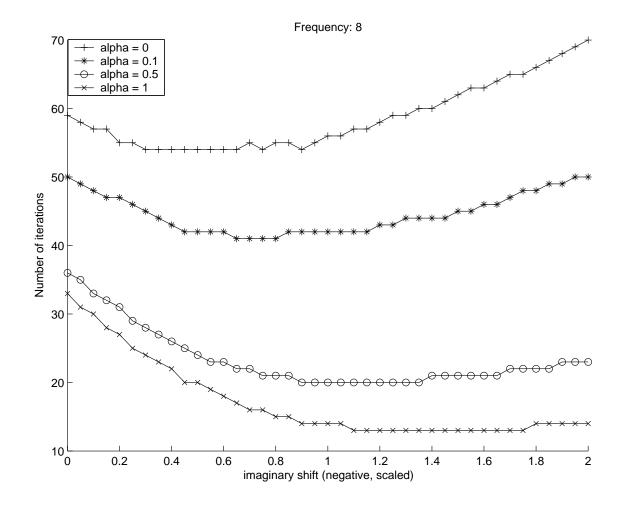
Motivation: the preconditioned system is easy to solve.



Which choices for z_2 are optimal?



Optimal choices for z_2 ?



TUDelft

Optimal choices for z_2 ?

Damping	Optimal β_2	"optimal" iterations	Minimum iterations	
$\beta_1 = 0$	-1	56	54	
$\beta_1 = -0.1$	-1.005	42	41	
$\beta_1 = -0.5$	-1.118	20	20	
$\beta_1 = -1$	-1.4142	13	13	

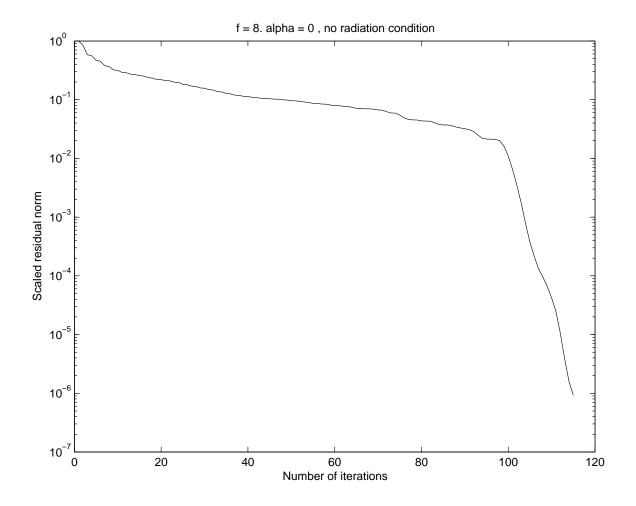
Optimal choices for z_2 ?

Damping	Optimal β_2	"optimal" iterations	Minimum iterations	
$\beta_1 = 0$	-1	56	54	
$\beta_1 = -0.1$	-1.005	42	41	
$\beta_1 = -0.5$	-1.118	20	20	
$\beta_1 = -1$	-1.4142	13	13	

	Number of iterations				
h	100/2	100/4	100/8	100/16	100/32
$\int f$	2	4	8	16	32
$\beta_1 = 0$	14	25	56	116	215
$\beta_1 = -0.1$	13	22	42	63	80
$\beta_1 = -0.5$	11	16	20	23	23
$\beta_1 = -1$	9	11	13	13	23

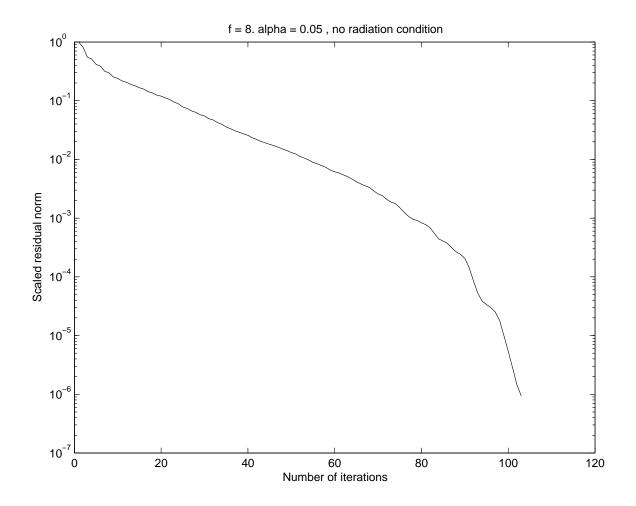
TUDelft

Superlinear convergence of GMRES



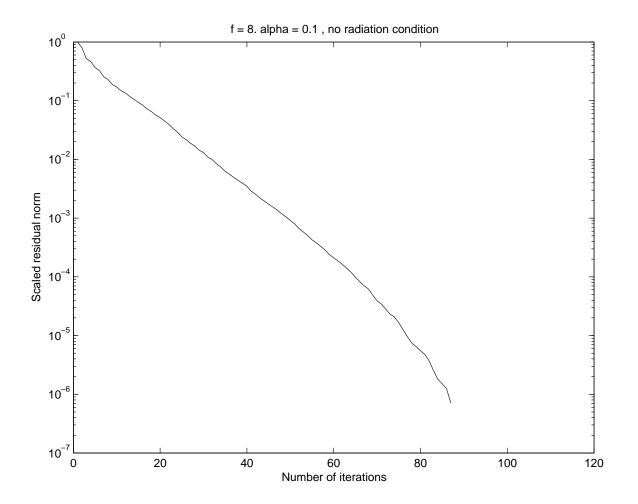
Delft University of Technology

Superlinear convergence of GMRES



Delft University of Technology

Superlinear convergence of GMRES



Delft University of Technology

No restriction on α_2

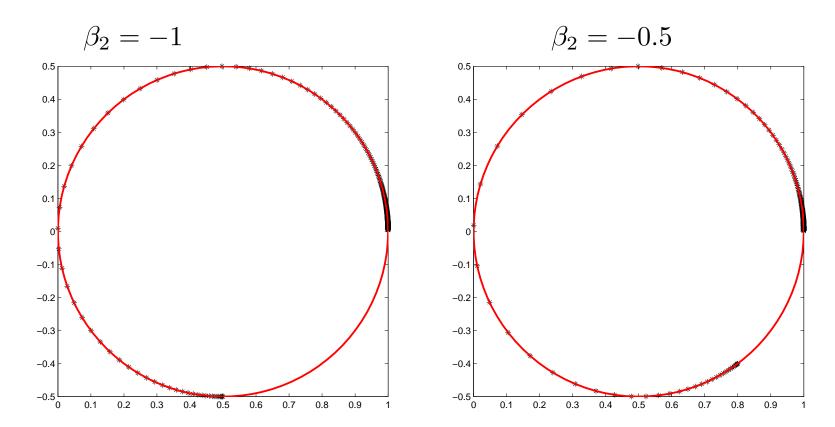
For the outer loop $\alpha_2 = 1$ and $\beta_2 = 0$ is optimal. Convergence in 1 iteration. But, the inner loop does not converge with multi-grid (original problem).

However, it appears that multi-grid works well for $\alpha_2 = 1$ and $\beta_2 = -1$ and the convergence of the outer loop is much faster than for the choice $\alpha_2 = 0$ and $\beta_2 = -1$.

TUDelft

Eigenvalues for Complex preconditioner k = 100 and $\alpha_2 = 1$

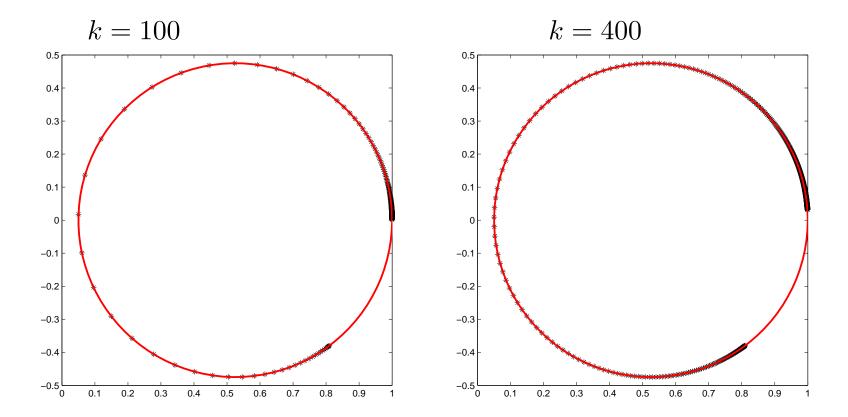
Spectrum is independent of the grid size



TUDelft

Eigenvalues for $\beta_1 = -0.025$ (damping) and $\alpha_2 = -1$, $\beta_2 = -0.5$

Spectrum is independent of the grid size and the choice of k.



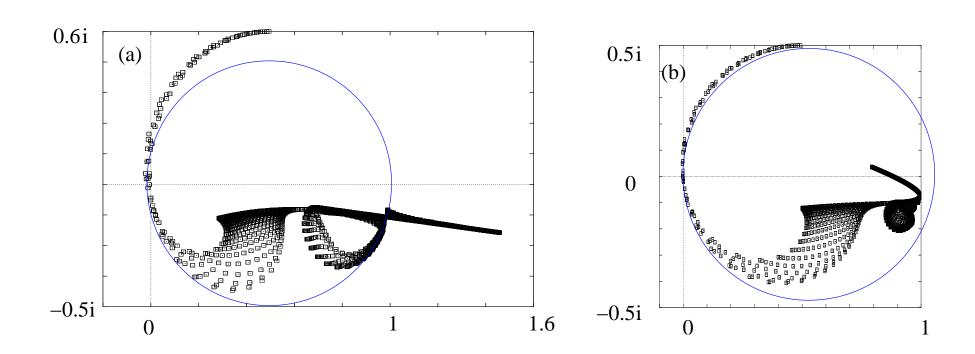
TUDelft

5. Numerical experiments

Multi-grid components

- geometric multi-grid
- ω -JAC smoother
- matrix dependent interpolation, restriction operator full weighting
- Galerkin coarse grid approximation
- F(1,1)-cycle
- P^{-1} is approximated by *one* multi-grid iteration
- in 3D semi-coarsening is used

Spectrum with inner iteration

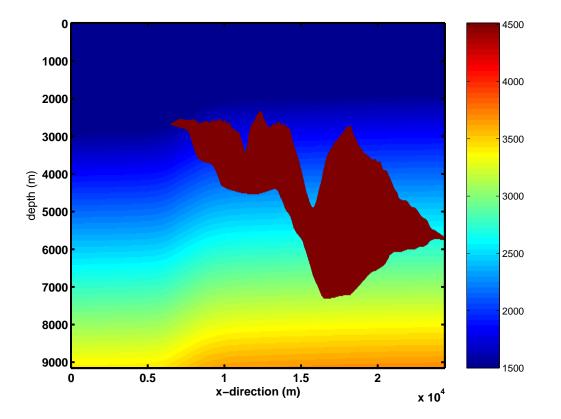


TUDelft

Delft University of Technology

C. Vuik, April 6, 2006 22 - p.22/28

Sigsbee model



TUDelft

dx = dz = 22.86 m; $D = 24369 \times 9144$ m²; grid points 1067×401 .

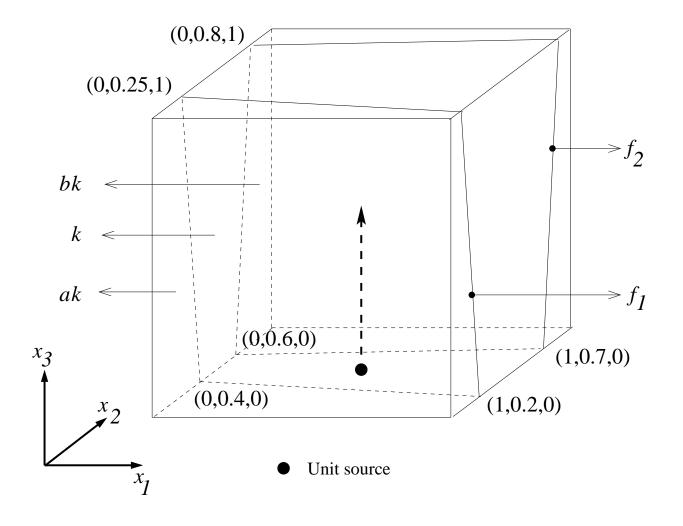
Bi-CGSTAB	5 H z		10 Hz	
	CPU (sec)	lter	CPU (sec)	lter
NO preco	3128	16549	1816	9673
With preco	86	48	92	58

Note: \triangleright Without preconditioner, number of iterations $> 10^4$,

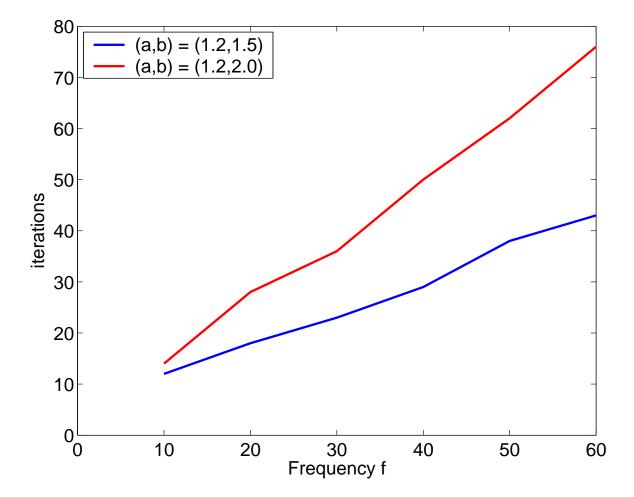
► With shifted Laplacian preconditioner, only 58 iterations.

TUDelft

3D wedge problem

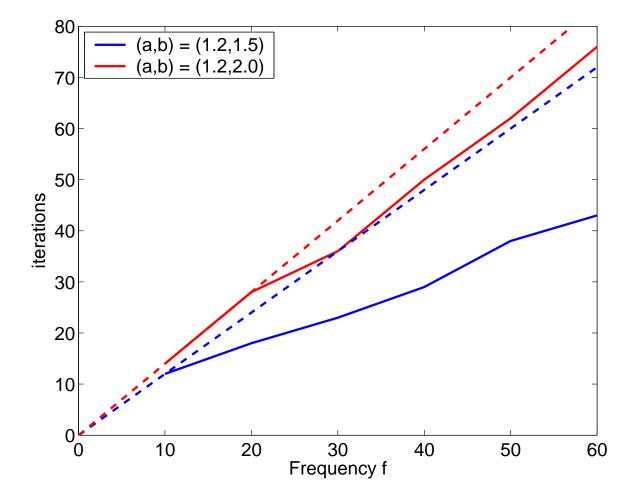


Numerical results for 3D wedge problem



Delft University of Technology

Numerical results for 3D wedge problem



Delft University of Technology

6. Conclusions

- The shifted Laplacian operator leads to robust preconditioners for the 2D and 3D Helmholtz equations with various boundary conditions.
- For real shifts the eigenvalues of the preconditioned operator are on a straight line.
- For complex shifts the eigenvalues of the preconditioned operator are on a circle.
- The proposed preconditioner (shifted Laplacian + multi-grid) is independent of the grid size and linearly dependent of k.
- With physical damping the proposed preconditioner is also independent of *k*.

TUDelft

lacksquare

http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

- Y.A. Erlangga and C. Vuik and C.W. Oosterlee
 On a class of preconditioners for solving the Helmholtz equation Appl. Num. Math., 50, pp. 409-425, 2004
- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006

