On the Convergence of Shifted Laplace Preconditioner Combined with Multigrid Deflation for the Helmholtz equation

Twelfth Copper Mountain Conference on Iterative Methods C. Vuik, A.H. Sheikh, and D. Lahaye 25 - 30 March, 2012

TUDelft

Delft University of Technology

1

Contents

- Introduction
- Preconditioning
- Second-level preconditioning (Deflation)
- Fourier Analysis of two-level method
- Numerical experiments
- Conclusions

The Helmholtz equation

The Helmholtz equation without damping

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y)$ in Ω

 $\mathbf{u}(x,y)$ is the pressure field,

 $\mathbf{k}(x,y)$ is the wave number,

 $\mathbf{g}(x,y)$ is the point source function and

 Ω is the domain. Absorbing boundary conditions are used on $\Gamma.$

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Problem description

• Second order Finite Difference stencil:

$$-1$$

 -1 $4 - k^2 h^2$ -1
 -1

- Linear system Au = g: properties
 Sparse & complex valued
 Symmetric & Indefinite for large k
- Is traditionally solved by a Krylov subspace method, which exploits the sparsity.

Preconditioning

- ILU and variants
- From Laplace to complex Shifted Laplace Preconditioner (2005)
- Shifted Laplace Preconditioner (SLP)

$$M := -\Delta \mathbf{u} - (\beta_1 - \iota \beta_2) k^2 \mathbf{u}$$

- Results shows: $(\beta_1, \beta_2) = (1, 0.5)$ is the shift of choice
- What is the effect of SLP?

Shifted Laplace Preconditioner

- Introduces damping, Multi-grid approximation is possible
- The modulus of all eigenvalues of the preconditioned operator is bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1}(1,0.5)A$ for

6

Some Results at a Glance

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	10	17	28	44	70	14
n = 64	10	17	28	36	45	163
n = 96	10	17	27	35	43	97
n = 128	10	17	27	35	43	85
n = 160	10	17	27	35	43	82
n = 320	10	17	27	35	42	80

Number of iterations depends linearly on k.

7

25 - 30 March, 2012

Deflation improves the convergence

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

Erlangga and Nabben, 2008, seems to be independent of k.

with / without deflation.

Erlangga and Nabben algorithm

Setting up:

For k = 1, set $A^{(1)} = A$, $M^{(1)} = M$, construct $Z^{(1,2)}$, $\lambda_{max}^{(k)} = 1$, $\forall k$.

From above, $\hat{A}^{(1)} = A^{(1)} M^{(1)^{-1}}$ and $P_{\lambda_{max}}^{(1)} = I - \hat{Q}^{(1)} \hat{A}^{(1)} + \hat{Q}^{(1)}$ with $\hat{Q}^{(1)} = Z^{(1,2)} \hat{A}^{(2)^{-1}} Z^{(1,2)^T}$

For k = 2, ..., m, construct $Z^{(k-1,k)}$ and compute

$$A^{(k)} = Z^{(k-1,k)^T} A^{(k-1)} Z^{(k-1,k)}, \ M^{(k)} = Z^{(k-1,k)^T} M^{(k-1)} Z^{(k-1,k)}$$

and

$$P_{\lambda_{max}}^{(k)} = I - Z^{(k-1,k)} \hat{A}^{(k)^{-1}} Z^{(k-1,k)^T} \left(\hat{A}^{(k)} - I \right) \text{ with } \hat{A}^{(k)} = A^{(k)} M^{(k)^{-1}} \hat{A}^{(k)} + A^{(k)} \hat{A}^{(k)} = A^{(k)} M^{(k)^{-1}} \hat{A}^{(k)} + A^{(k)} \hat{A}^{(k)} = A^{(k)} M^{(k)^{-1}} \hat{A}^{(k)} + A^{(k)} \hat{A}^{(k)} + A^{$$

25 - 30 March, 2012

$\begin{array}{l} \textbf{Iside Iterations} \\ \textbf{Solve:} \quad A^{(2)}M^{(2)^{-1}}v_R^{(2)} = (v_R)^{(2)} \text{ with Krylov} \\ v_A^{(2)} = A^{(2)}v^{(2)}; \\ s^{(2)} = M^{(2)^{-1}}v_A^{(2)}; \\ t^{(2)} = s^{(2)} - \lambda_{max}^{(2)}v^{(2)}; \\ \textbf{Restriction:} \quad (v_R)^{(3)} = Z^{(2,3)^T}t^{(2)} \\ \textbf{If } k = m \\ v_R^{(m)} = A^{(m)^{-1}}(v_R')^{(m)} \\ \textbf{else} \end{array}$

Solve:
$$A^{(3)}M^{(3)^{-1}}v_R^{(3)} = (v_R)^{(3)}$$
 with Krylov

Interpolation:
$$v_I^{(2)} = Z^{(2,3)} v_R^{(3)}$$

 $q^{(2)} = v^{(2)} - v_I^{(2)}$
 $w^{(2)} = M^{(2)^{-1}} q^{(2)}$

 $p^{(2)} = A^{(2)} w^{(2)}$

. . .

25 - 30 March, 2012

Delft Institute of Applied Mathematics

Deflation: or two-grid method

For any deflation subspace matrix

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, rankZ = r

P = I - AQ, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

Solve PAu = Pg preconditioned by M^{-1} or $M^{-1}PA = M^{-1}Pg$ For e.g. say,

 $\operatorname{spec}(A) = \{\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n\}$

and if Z is the matrix with columns the r eigenvectors then

$$\operatorname{spec}(PA) = \{0, ..., 0, \lambda_{r+1}, ...\lambda_n\}$$

25 - 30 March, 2012

Delft Institute of Applied Mathematics

Deflation

We use multi-grid inter-grid transfer operator (Prolongation) as deflation matrix.

Setting $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

P = I - AQ, with $Q = I_h^{2h} E^{-1} I_{2h}^h$ and $E = I_{2h}^h A I_h^{2h}$

where

- P can be interpreted as a coarse grid correction and
- Q as the coarse grid operator

Dirichlet boundary conditions for analysis. With above deflation,

 $\operatorname{spec}(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$

is a complex valued function.

Setting kh = 0.625,

- Spectrum of $PM^{-1}A$ with shifts (1, 0.5) is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift is varied from 0.5 to 1.

Analysis shows spectrum clustered around 1 with few outliers.

25 - 30 March, 2012

Delft Institute of Applied Mathematics

Analysis shows that an increase in the imaginary shift does not change the spectrum.

Sommerfeld boundary conditions are used for test problem. What is the effect of an increase in the imaginary shift in SLP? Constant wavenumber problem Wedge problem

25 - 30 March, 2012

Number of GMRES iterations with/without deflation. Shifts in the preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

17

25 - 30 March, 2012

Number of GMRES iterations with/without deflation to solve a Wedge problem. Shifts in the preconditioner are (1, 0.5)

Grid	freq = 10	freq = 20	freq = 30	freq = 40	freq = 50
74×124	7/33	20/60	79/95	267/156	490/292
148×248	5/33	9/57	17/83	42/112	105/144
232×386	5/33	7/57	10/81	25/108	18/129
300×500	4/33	6/57	8/81	12/105	18/129
374×624	4/33	5/57	7/80	9/104	13/128

TUDelft

K

25 - 30 March, 2012

Number of GMRES iterations for the 1D Helmholtz equation $10 \leq k \leq 800$

25 - 30 March, 2012

Delft Institute of Applied Mathematics

Number of GMRES iterations for the 1D Helmholtz equation $1000 \le k \le 20000$

25 - 30 March, 2012

Number of GMRES outer-iterations in multilevel algorithm. $(\beta_1, \beta_2) = (1, 0.5) \ kh = .3125 \ \text{or} \ 20 \ \text{gp/wl}$ and MG Vcycle(1,1) for SLP

Grid	k = 10	k = 20	k = 40	k = 80	k = 160
MLMGV(4,2,1)	9	11	16	27	100+
MLMGV(6,2,1)	9	10	14	21	47
MLMGV(8,2,1)	9	10	13	20	38
MLMGV(8,3,2)	9	10	13	19	37

Spectrum of A, $M^{-1}A$ and $PM^{-1}A$ (from left to right) in bar-graph.

Delft Institute of Applied Mathematics

Conclusions

- Parameter (in)dependent scheme.
- Numerical results confirm analysis.
- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- Flexibility to increase imaginary shift, when deflation is combined with SLP.
- Further research Multilevel scheme, applying similarly for coarse problem in deflation. Questions: gain in CPU time? why not scalable? ...

References

- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- J.M. Tang. Two level preconditioned Conjugate Gradient methods with applications to bubbly flow problems. PhD Thesis, DIAM TU Delft 2008.
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. submitted
- U. Trottenberg, C.W. Oosterlee and A. Schuller. Multi-grid. Academic Press London 2000.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011

24

25 - 30 March, 2012