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The Helmholtz equation

The Helmholtz equation without damping

−∆u(x, y) − k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,
k(x, y) is the wave number,
g(x, y) is the point source function and
Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.
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Problem description
• Second order Finite Difference stencil:
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• Linear system Au = g: properties
Sparse & complex valued
Symmetric & Indefinite for large k

• Is traditionally solved by a Krylov subspace method, which
exploits the sparsity.
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Preconditioning
• ILU and variants

• From Laplace to complex Shifted Laplace Preconditioner (2005)

• Shifted Laplace Preconditioner (SLP)

M := −∆u − (β1 − ιβ2)k
2
u

• Results shows: (β1, β2) = (1, 0.5) is the shift of choice

• What is the effect of SLP?
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Shifted Laplace Preconditioner
• Introduces damping, Multi-grid approximation is possible

• The modulus of all eigenvalues of the preconditioned operator is
bounded by 1

• Small eigenvalues move to zero, as k increases.

Spectrum of M−1(1, 0.5)A for

k = 30 and k = 120
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Some Results at a Glance

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 10 17 28 44 70 14

n = 64 10 17 28 36 45 163

n = 96 10 17 27 35 43 97

n = 128 10 17 27 35 43 85

n = 160 10 17 27 35 43 82

n = 320 10 17 27 35 42 80

Number of iterations depends linearly on k.
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Deflation improves the convergence

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Erlangga and Nabben, 2008, seems to be independent of k.

with / without deflation.
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Erlangga and Nabben algorithm

Setting up:

For k = 1, set A(1) = A, M (1) = M , construct Z(1,2), λ
(k)
max = 1, ∀ k.

From above, Â(1) = A(1)M (1)−1

and P
(1)
λmax

= I − Q̂(1)Â(1) + Q̂(1) with

Q̂(1) = Z(1,2)Â(2)−1

Z(1,2)T

For k = 2, . . . , m, construct Z(k−1,k) and compute

A(k) = Z(k−1,k)T

A(k−1)Z(k−1,k), M (k) = Z(k−1,k)T

M (k−1)Z(k−1,k)

and

P
(k)
λmax

= I−Z(k−1,k)Â(k)−1

Z(k−1,k)T
(

Â(k) − I
)

with Â(k) = A(k)M (k)−1
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Inside Iterations
Solve: A(2)M (2)−1

v
(2)
R = (vR)(2) with Krylov

v
(2)
A = A(2)v(2);

s(2) = M (2)−1

v
(2)
A ;

t(2) = s(2) − λ
(2)
maxv(2);

Restriction: (vR)(3) = Z(2,3)T

t(2)

If k = m

v
(m)
R = A(m)−1

(v′R)(m)

else

Solve: A(3)M (3)−1

v
(3)
R = (vR)(3) with Krylov

. . .

Interpolation: v
(2)
I = Z(2,3)v

(3)
R

q(2) = v(2) − v
(2)
I

w(2) = M (2)−1

q(2)

p(2) = A(2)w(2)
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Deflation: or two-grid method

For any deflation subspace matrix

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rankZ = r

P = I − AQ, with Q = ZE−1ZT and E = ZT AZ

Solve PAu = Pg preconditioned by M−1 or M−1PA = M−1Pg

For e.g. say,

spec (A) = {λ1, λ2, λ3, ..., λn}

and if Z is the matrix with columns the r eigenvectors then

spec (PA) = {0, ..., 0, λr+1, ...λn}
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Deflation

We use multi-grid inter-grid transfer operator (Prolongat ion) as deflation matrix.

Setting Z = I2h
h and ZT = Ih

2h then

P = I − AQ, with Q = I2h
h E−1Ih

2h and E = Ih
2hAI2h

h

where
P can be interpreted as a coarse grid correction and
Q as the coarse grid operator
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Fourier Analysis

Dirichlet boundary conditions for analysis.
With above deflation,

spec (PM−1A) = f(β1, β2, k, h)

is a complex valued function.
Setting kh = 0.625,

• Spectrum of PM−1A with shifts (1, 0.5) is clustered around 1 with
a few outliers.

• Spectrum remains almost the same, when the imaginary shift is
varied from 0.5 to 1.
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Fourier Analysis

Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Analysis shows that an increase in the imaginary shift does not change
the spectrum.

(β1, β2) = (1, 0.5) (β1, β2) = (1, 1)
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Numerical results

Sommerfeld boundary conditions are used for test problem.

What is the effect of an increase in the imaginary shift in SLP?

Constant wavenumber problem Wedge problem

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

β
2

N
o.

 o
f i

te
ra

tio
ns

 

 

With deflation
Without deflation

0 0.2 0.4 0.6 0.8 1
0

50

100

150

β
2

N
o.

 o
f i

te
ra

tri
on

s

 

 

With deflation
Without deflation



25 - 30 March, 2012 17

Delft Institute of Applied Mathematics

Numerical results

Number of GMRES iterations with/without deflation. Shifts in the
preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80
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Numerical results

Number of GMRES iterations with/without deflation to solve a Wedge
problem. Shifts in the preconditioner are (1, 0.5)

Grid freq = 10 freq = 20 freq = 30 freq = 40 freq = 50

74× 124 7/33 20/60 79/95 267/156 490/292

148× 248 5/33 9/57 17/83 42/112 105/144

232× 386 5/33 7/57 10/81 25/108 18/129

300× 500 4/33 6/57 8/81 12/105 18/129

374× 624 4/33 5/57 7/80 9/104 13/128
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Numerical results

•
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Numerical results
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Numerical results

Number of GMRES outer-iterations in multilevel algorithm.
(β1, β2) = (1, 0.5) kh = .3125 or 20 gp/wl
and MG Vcycle(1,1) for SLP

Grid k = 10 k = 20 k = 40 k = 80 k = 160

MLMGV(4,2,1) 9 11 16 27 100+

MLMGV(6,2,1) 9 10 14 21 47

MLMGV(8,2,1) 9 10 13 20 38

MLMGV(8,3,2) 9 10 13 19 37
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Fourier Analysis
Spectrum of A, M−1A and PM−1A (from left to right) in bar-graph.
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Conclusions
• Parameter (in)dependent scheme.

• Numerical results confirm analysis.

• Without deflation, when imaginary shift is increased in SLP,
spectrum remains bounded above 1, but lower part moves to zero.

• Flexibility to increase imaginary shift, when deflation is combined
with SLP.

• Further research Multilevel scheme, applying similarly for coarse
problem in deflation. Questions: gain in CPU time? why not
scalable? ...
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