

Physics-based preconditioners for large-scale subsurface flow simulation.

Kees Vuik ¹, Gabriela B. Diaz Cortes ¹, Jan Dirk Jansen ².

¹Department of Applied Mathematics, TU Delft.

²Department of Geoscience & Engineering, TU Delft.

14th Copper Mountain Conference on Iterative Methods, 2016

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells.

Figure : Permeability field SPE10.

Method	Number or iterations
ICCG	1029
DICCG	

Table : Number of iterations for the SPE 10 benchmark for the ICCG and DICCG methods, tolerance of 10^{-11} .

Vuik, Diaz, Jansen (TU Delft)

SPE 10

Single-phase flow, grid size $60 \times 220 \times 85$ grid cells.

Figure : Permeability field SPE10.

Method	Number or iterations
ICCG	1029
DICCG	1

Table : Number of iterations for the SPE 10 benchmark (85 layers) for the ICCG and DICCG methods, tolerance of 10^{-7} .

Vuik, Diaz, Jansen (TU Delft)

Table of Contents

Problem Definition

2 CG Method

PCG (ICCG) Method

4 DPCG Method

5 Deflation Vectors

7 Conclusions

Problem Definition

Optimal Control

Figure : Optimal Control¹.

Vuik, Diaz, Jansen (TU Delft)

Reservoir Simulation

Single-phase flow through porous media [5]

Darcy's law + mass balance equation

$$-\nabla \cdot \left[\frac{\alpha \rho}{\mu} \vec{\mathbf{K}} (\nabla \mathbf{p} - \rho g \nabla d)\right] + \alpha \rho \phi c_t \frac{\partial \mathbf{p}}{\partial t} - \alpha \rho \mathbf{q} = 0.$$
$$c_t = (c_l + c_r),$$

g gravity d depth ϕ rock porosity q sources c_r rock compressibility

c1 liquid compressibility

 α a geometric factor ρ fluid density μ fluid viscosity **p** pressure $\vec{\mathbf{K}}$ rock permeability

Problem Definition

Discretization

2D case, isotropic permeability, small rock and fluid compressibilities, uniform reservoir thickness and no gravity forces.

$$-\frac{h}{\mu}\frac{\partial}{\partial x}\left(k\frac{\partial \mathbf{p}}{\partial x}\right)-\frac{h}{\mu}\frac{\partial}{\partial y}\left(k\frac{\partial \mathbf{p}}{\partial y}\right)-\frac{h}{\mu}\frac{\partial}{\partial z}\left(k\frac{\partial \mathbf{p}}{\partial z}\right)+h\phi_0c_t\frac{\partial \mathbf{p}}{\partial t}-h\mathbf{q}=0.$$

$$\mathcal{V}\dot{\mathbf{p}} + \mathcal{T}\mathbf{p} = \mathbf{q}.$$

Transmissibility matrix

Accumulation matrix

$$\mathcal{V} = V c_t \phi_0 \mathcal{I},$$

$$V = h\Delta x \Delta y \Delta z.$$

$$\mathcal{T}_{i-\frac{1}{2},j} = \frac{\Delta y}{\Delta x} \frac{h}{\mu} k_{i-\frac{1}{2},j},$$

$$k_{i-\frac{1}{2},j} = \frac{2}{\frac{1}{k_{i-1,j}} + \frac{1}{k_{i,j}}}.$$

Problem Definition

Incompressible model

$$\mathcal{T}\mathbf{p} = \mathbf{q}.$$

Properties of \mathcal{T}

Condition number of a SPD matrix.

Eigenvalues

$$\mathcal{T}\mathbf{p} = \lambda \mathbf{p}$$
 $\kappa_2(\mathcal{T}) = \frac{\lambda_{max}(\mathcal{T})}{\lambda_{min}(\mathcal{T})}$

q : sources or wells in the reservoir.

Peaceman well model

$$\mathbf{q} = -J_{well}(\mathbf{p} - \mathbf{p}_{well})$$

 J_{well} is the well index, negative sign is a production well.

Conjugate Gradient Method (CG)

Successive approximations to obtain a more accurate solution x [6]

 $\mathcal{A} \mathbf{x} = \mathbf{b},$

x⁰, initial guess

 $\begin{aligned} \vdots \\ \mathbf{x}^k &= \mathbf{x}^{k-1} + \mathcal{M}^{-1} \mathbf{r}^{k-1}, \qquad \mathbf{r}^k &= \mathbf{b} - \mathcal{A} \mathbf{x}^{k-1}. \end{aligned}$

 $\min_{\mathbf{x}^k \in \kappa_k(\mathcal{A}, \mathbf{r}^0)} ||\mathbf{x} - \mathbf{x}^k||_{\mathcal{A}}, \qquad ||\mathbf{x}||_{\mathcal{A}} = \sqrt{\mathbf{x}^T \mathcal{A} \mathbf{x}}.$

Convergence

$$||\mathbf{x} - \mathbf{x}^{k}||_{\mathcal{A}} \leq 2||\mathbf{x} - \mathbf{x}^{0}||_{\mathcal{A}} \left(\frac{\sqrt{\kappa(\mathcal{A})} - 1}{\sqrt{\kappa(\mathcal{A})} + 1}\right)^{k+1}$$

PCG (ICCG)

Preconditioning

Improve the spectrum of \mathcal{A} .

$$\mathcal{M}^{-1}\mathcal{A}\mathbf{x} = \mathcal{M}^{-1}\mathbf{b}.$$

Convergence

$$egin{aligned} ||\mathbf{x}-\mathbf{x}^k||_\mathcal{A} &\leq 2 ||\mathbf{x}-\mathbf{x}^0||_\mathcal{A} \left(rac{\sqrt{\kappa(\mathcal{M}^{-1}\mathcal{A})}-1}{\sqrt{\kappa(\mathcal{M}^{-1}\mathcal{A})}+1}
ight)^{k+1}, \ &\kappa(\mathcal{M}^{-1}\mathcal{A}) &\leq \kappa(\mathcal{A}). \end{aligned}$$

Cholesky Decomposition If $\mathcal{A} \in \mathcal{R}^{n \times n}$ is SPD,

$$\mathcal{A} = \mathcal{L}\mathcal{L}^{\mathsf{T}}$$

IC(0)Let $a_{i,j} \in A$ and $l_{i,j} \in \mathcal{L}^*$, \mathcal{L}^* the matrix from the Cholesky decomposition, such that $l_{i,j} = 0$ if $a_{i,j} = 0$.

DPCG

Deflation

$$\begin{aligned} \mathcal{P} &= \mathcal{I} - \mathcal{A}\mathcal{Q}, \quad \mathcal{P} \in \mathbb{R}^{n \times n}, \quad \mathcal{Q} \in \mathbb{R}^{n \times n}, \\ \mathcal{Q} &= \mathcal{Z} \mathcal{E}^{-1} \mathcal{Z}^{\mathsf{T}}, \quad \mathcal{Z} \in \mathbb{R}^{n \times k}, \quad \mathcal{E} \in \mathbb{R}^{k \times k}, \\ \mathcal{E} &= \mathcal{Z}^{\mathsf{T}} \mathcal{A} \mathcal{Z} \text{ (Tang 2008, [7]).} \end{aligned}$$

Convergence Deflated system

$$||\mathbf{x} - \mathbf{x}^{k}||_{\mathcal{A}} \leq 2||\mathbf{x} - \mathbf{x}^{0}||_{\mathcal{A}} \left(\frac{\sqrt{\kappa(\mathcal{P}\mathcal{A})} - 1}{\sqrt{\kappa_{eff}(\mathcal{P}\mathcal{A})} + 1}\right)^{k+1}$$

Deflated and preconditioned system

$$egin{aligned} &||\mathbf{x}-\mathbf{x}^{k}||_{\mathcal{A}}\leq 2||\mathbf{x}-\mathbf{x}^{0}||_{\mathcal{A}}\left(rac{\sqrt{\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})}-1}{\sqrt{\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})}+1}
ight)^{k+1}.\ &\kappa_{eff}(\mathcal{M}^{-1}\mathcal{P}\mathcal{A})\leq\kappa_{eff}(\mathcal{P}\mathcal{A})\leq\kappa(\mathcal{A}). \end{aligned}$$

.

Recycling deflation (Clemens 2004, [8]).

$$\mathcal{Z} = [\mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^{q-1}],$$

 x^i 's are solutions of the system.

Multigrid and multilevel (Tang 2009, [9]).

The matrices \mathcal{Z} and \mathcal{Z}^T are the restriction and prolongation matrices of multigrid methods.

Subdomain deflation (Vuik 1999,[10]).

Proposal

Use solution of the system with various well configurations as deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal Decomposition (POD).

Deflation vectors

Lemma 1. Let $\mathcal{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, such that

$$\mathcal{A}\mathbf{x} = \mathbf{b},\tag{1}$$

and $\mathbf{x}_i, \mathbf{b}_i \in \mathbb{R}^n, i = 1, ..., m, \mathbf{b}_i$ are linearly independent (1.i.) such that:

$$\mathcal{A}\mathbf{x}_i = \mathbf{b}_i. \tag{2}$$

The following equivalence holds

$$\mathbf{x} = \sum_{i=1}^{m} c_i \mathbf{x}_i \qquad \Leftrightarrow \qquad \mathbf{b} = \sum_{i=1}^{m} c_i \mathbf{b}_i. \tag{3}$$

Proof \Rightarrow Substituting **x** from (3) into $A\mathbf{x} = \mathbf{b}$, and using linearity of A and(2):

$$\mathcal{A}\mathbf{x} = \sum_{i=1}^{m} \mathcal{A}c_i \mathbf{x}_i = \mathcal{A}(c_1 \mathbf{x}_1 + \dots + c_m \mathbf{x}_m)$$
$$= \mathcal{A}c_1 \mathbf{x}_1 + \dots + \mathcal{A}c_m \mathbf{x}_m = c_1 \mathbf{b}_1 + \dots + c_m \mathbf{b}_m = \sum_{i=1}^{m} c_i \mathbf{b}_i.$$
(4)

Similar proof for \Leftarrow

Vuik, Diaz, Jansen (TU Delft)

Deflation vectors

Lemma 2. If the the deflation matrix \mathcal{Z} is constructed with a set of *m* vectors

$$\mathcal{Z} = \begin{bmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_m \end{bmatrix},$$

such that $\mathbf{x} = \sum_{i=1}^{m} c_i \mathbf{x}_i$, with \mathbf{x}_i *l.i.*, then the solution of system $A\mathbf{x} = \mathbf{b}$ is achieved within one iteration of DCG.

Proof.

The relation between $\hat{\mathbf{x}}$ and \mathbf{x} is given as:

$$\mathbf{x} = \mathcal{Q}\mathbf{b} + \mathcal{P}^{T}\mathbf{\hat{x}}.$$
 (5)

For the first term $Q\mathbf{b}$, taking $\mathbf{b} = \sum_{i=1}^{m} c_i \mathbf{b}_i$ we have:

$$\mathcal{Q}\mathbf{b} = \mathcal{Z}\mathcal{E}^{-1}\mathcal{Z}^{T}\left(\sum_{i=1}^{m} c_{i}\mathbf{b}_{i}\right) = \mathcal{Z}(\mathcal{Z}^{T}\mathcal{A}\mathcal{Z})^{-1}\mathcal{Z}^{T}\left(\sum_{i=1}^{m} c_{i}\mathcal{A}\mathbf{x}_{i}\right) =$$
Lemma 1
$$= \mathcal{Z}(\mathcal{Z}^{T}\mathcal{A}\mathcal{Z})^{-1}\mathcal{Z}^{T}\left(\mathcal{A}\mathbf{x}_{1}c_{1} + \dots + \mathcal{A}\mathbf{x}_{m}c_{m}\right) = \mathcal{Z}(\mathcal{Z}^{T}\mathcal{A}\mathcal{Z})^{-1}\mathcal{Z}^{T}\mathcal{A}\mathcal{Z}\mathbf{c}$$
$$= \mathcal{Z}\mathbf{c} = c_{1}\mathbf{x}_{1} + c_{2}\mathbf{x}_{2} + c_{3}\mathbf{x}_{3} + c_{4}\mathbf{x}_{4} + c_{5}\mathbf{x}_{5} = \sum_{i=1}^{m} c_{i}\mathbf{x}_{i} = \mathbf{x}.$$

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given data set (Markovinović 2009 [1], Astrid 2011, [2])

$$\Phi = [\phi_1, \phi_2, \dots, \phi_l] \in \mathbb{R}^{n \times l}$$

 ϕ_i , basis functions.

• Get the snapshots

$$\mathcal{X} = [\mathbf{x}_1, \mathbf{x}_2, \dots \mathbf{x}_m].$$

• *I* eigenvectors of
$$\mathcal{R}$$
 satisfying:

$$\frac{\sum_{j=1}^{l} \lambda_j}{\sum_{j=1}^{m} \lambda_j} \leq \alpha, \qquad 0 < \alpha \leq 1.$$

$$\mathcal{R} := \frac{1}{m} \mathcal{X} \mathcal{X}^{\mathsf{T}} \equiv \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathsf{T}}.$$

Case 1. Heterogeneous permeability.

The experiments were performed for single-phase flow, with the following characteristics:

Grid size $nx \times ny$ grid cells, nx = ny = 64. Permeability 1 mD. W1 = W2 = W3 = W4 = -1 bars.

W5 = +4 bars.

Neumann boundary conditions.

Figure : Heterogeneous permeability layers.

Snapshots

 $\begin{array}{l} \textbf{z}_1: \ W1 = 0 \ \text{bars}, \ W2 = W3 = W4 = -1 \ \text{bars}, \ W5 = b5 = +3 \ \text{bars}. \\ \textbf{z}_2: \ W2 = 0 \ \text{bars}, \ W1 = W3 = W4 = -1 \ \text{bars}, \ W5 = b5 = +3 \ \text{bars}. \\ \textbf{z}_3: \ W3 = 0 \ \text{bars}, \ W1 = W3 = W4 = -1 \ \text{bars}, \ W5 = b5 = +3 \ \text{bars}. \\ \textbf{z}_4: \ W4 = 0 \ \text{bars}, \ W1 = W2 = W3 = -1 \ \text{bars}, \ W5 = b5 = +3 \ \text{bars}. \\ \textbf{z}_5: \ W1 = W2 = W3 = W4 = -1 \ \text{bars}, \ W5 = b5 = +4 \ \text{bars}. \end{array}$

Results

$\sigma_2 (mD)$	10^{-1}	10 ⁻³	10^{-5}	10 ⁻⁷
ICCG	90	131	65*	64*
DICCG ₄	1	1	1*	1*
DICCG ₅	1	500*	500*	500*

Table : Number of iterations for different contrast in the permeability of the layers $(\sigma_1 = 1mD)$ for the ICCG and DICCG methods, tolerance of 10^{-11} , snapshots 10^{-11} . DICCG₄ is the method with 4 deflation vectors and DICCG₅ is the method with 5 deflation vectors.

Numerical experiments (Heterogeneous permeability)

Condition number of an SPD matrix.

$$\kappa_2(\mathcal{A}) = rac{\lambda_{max}(\mathcal{A})}{\lambda_{min}(\mathcal{A})}$$

$\sigma_2 (mD)$	10^1	10 ⁻³	10 ⁻⁵	10 ⁻⁷
$\kappa(A)$	$2.6 imes10^3$	2.4×10 ⁵	$2.4 imes10^7$	$2.4 imes10^9$
$\kappa(M^{-1}A)$	206.7	$8.3 imes10^3$	$8.3 imes10^5$	$8.3 imes10^7$
$\kappa_{eff}(M^{-1}PA)$	83.27	$6 imes 10^3$	$1 imes 10^{6}$	$6 imes 10^7$

Table : Condition number for various permeability contrasts between the layers, grid size of 32 × 32, $\sigma_1 = 1mD$.

Numerical experiments (Heterogeneous permeability)

Relative error

$$e = rac{||\mathbf{x} - \mathbf{x}^k||_2}{||\mathbf{x}||_2} \le \kappa_2(A)\epsilon,$$

with \mathbf{x} the true solution and \mathbf{x}^k the approximation

Taking $e = 10^{-7}$.

$\sigma_2 (mD)$	10^{-1}	10 ⁻³	10 ⁻⁵	10 ⁻⁷
$tol = \frac{e}{\kappa_2(M^{-1}A)} = \frac{10^{-7}}{\kappa_2(M^{-1}A)}$	$5 imes 10^{-9}$	1×10^{-10}	10 ⁻¹²	1×10^{-14}
$tol = \frac{e}{\kappa_{eff}(M^{-1}PA)} = \frac{10^{-7}}{\kappa_{eff}(M^{-1}PA)}$	$1 imes 10^{-8}$	2×10^{-10}	10 ⁻¹²	2×10^{-14}

Table : Tolerance needed for various permeability contrast between the layers, grid size of 32×32 , $\sigma_1 = 1mD$, for an error of $e = 10^{-7}$.

Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

Figure : Permeability field, 16×56 and 60×220 grid cells.

Grid	16 x 56	30×110	46×166	60 x 220
size				
Contrast $(\times 10^7)$	1.04	2.52	2.6	2.8

Table : Contrast in permeability for different grid sizes $(\sigma_{max}/\sigma_{min})$.

Condition num-	value
ber	
$\kappa(A)$	$2.2 imes10^{6}$
$\kappa(M^{-1}A)$	377
$\kappa_{eff}(M^{-1}PA)$	82.7

Table : Table with the condition number of the SPE10 model, grid size of 16×56 .

Vuik, Diaz, Jansen (TU Delft)

P-BPFS

Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

Tol	Method	16 × 56	30 x 110	46 × 166	60 x 220
(snap-					
shots)					
	ICCG	34	73	126	159
10 ⁻¹	DICCG ₄	33	72	125	158
	DICCG ₅	500*	500*	500*	500*
10 ⁻³	DICCG ₄	18	38	123	151
	DICCG ₅	18	35	123	150
10^{-5}	DICCG ₄	11	21	27	55
	DICCG ₅	9	22	23	54
10 ⁻⁷	DICCG ₄	1	1	1	1
	DICCG ₅	1	1	1	1

Table : Number of iterations for ICCG and DICCG, diverse tolerance for the snapshots, different grid sizes. DICCG₄ is computed with 4 deflation vectors, $DICCG_5$ with 5.

Numerical experiments

SPE 10 model, 85 layers

Figure : Convergence plot ICCG and DICCG.

Figure : Solution ICCG and DICCG.

Method	Number or iterations
ICCG	1029
DICCG	1

Table : Number of iterations ICCG and DICCG, relative tolerance 10^{-11} .

- Solution is reached in 1 iteration for DICCG method.
- Number of iterations for the DICCG method does not depend on the contrast between the coefficients (Heterogeneous permeability example).
- Number of iterations for the DICCG method does not depend on the grid size (SPE 10 example).
- The choice of deflation vectors is important for a good performance of DICCG.

- Study the computation time of DICCG.
- Work with compressible models.
- Other snapshots?.
- Use of POD for the selection of deflation vectors.

References I

R. Markovinović.

System-Theoretical Model Reduction for Reservoir Simulation and Optimization. PhD thesis, Delft University of Technology, 2009.

P. Astrid, G. Papaioannou, J. C Vink, and J.D. Jansen.

Pressure Preconditioning Using Proper Orthogonal Decomposition. In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, pages 21–23, January 2011.

G. B. Diaz Cortes, C. Vuik, and J. D. Jansen.

Physics-based pre-conditioners for large-scale subsurface flow simulation. Report 16-3, Delft University of Technology, Delft Institute of Applied Mathematics, Delft, 2016.

K.A. Lie.

An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEE ICT 2013

D. Jansen

A systems description of flow through porous media. Springer, 2013.

Y. Saad.

Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics Philadelphia, PA, USA. 2nd edition, 2003.

J. Tang.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly Flow Problems. PhD thesis, Delft University of Technology, 2008.

M. Clemens, M. Wilke, R. Schuhmann, and T. Weiland.

Subspace projection extrapolation scheme for transient field simulations. *IEEE Transactions on Magnetics*, 40(2):934–937, 2004.

C. Vuik J.M. Tang, R. Nabben and Y. Erlangga.

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods. Journal of scientific computing, 39(3):340–370, 2009.

C. Vuik, A. Segal, and J. A. Meijerink.

An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients.

Journal of Computational Physics, 152:385–403, 1999.