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SPE 10

Single-phase flow, grid size 60 x 220 x 85 grid cells.

Figure - Permeability field SPE10.

Method | Number or iterations
ICCG 1029
DICCG

Table - Number of iterations for the SPE 10 benchmark for the ICCG and DICCG

methods, tolerance of 10~ 1!.
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SPE 10

Single-phase flow, grid size 60 x 220 x 85 grid cells.

Figure - Permeability field SPE10.

Method | Number or iterations
ICCG 1029
DICCG 1

Table : Number of iterations for the SPE 10 benchmark (85 layers) for the ICCG

and DICCG methods, tolerance of 10~7.
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Problem Definition

Optimal Control
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Problem Definition

Reservoir Simulation
Single-phase flow through porous media [5]

Darcy's law + mass balance equation

- 0
-V %K(Vp —pgVd)| + apgbcta—'z —apq = 0.

= (a+c),

g gravity
« a geometric factor d depth

p fluid density ¢ rock porosity

w fluid viscosity q sources

p pressure ¢, rock compressibility

K rock permeability ¢/ liquid compressibility
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Problem Definition

Discretization

2D case, isotropic permeability, small rock and fluid compressibilities,
uniform reservoir thickness and no gravity forces.

h 0 op h 0 op h 0 op op
1 Ox (k3X) 1Ay (kay) p 0z <k32> *hoocigy —ha=0.

|Vr')+7'p:q.|

Transmissibility matrix
Accumulation matrix

_Ayh he
i—3J ANo i—L
V = VerdoZ, 2 Axop T2
V = hAxAyAz. kL= 2
=34 1 4.1
ki—1,j ki j
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Problem Definition

Incompressible model
Tp=aq.
Properties of T
Condition number of a SPD matrix.
Eigenvalues Amax(T)

Tp=Ap r2(T) = Fon(T)

g : sources or wells in the reservoir.

Peaceman well model
q= _Jwell(p - pwell)

Jwenr is the well index, negative sign is a production well.
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Conjugate Gradient Method (CG)

Successive approximations to obtain a more accurate solution x [6]
Ax = b,

X, initial guess
XK =xT M7 k= b - AxK L

Mingee X =% 4, [lx]la = VxTAx.
Convergence

)1 k1
VE(A)+1 '

[ = x4 < 2[[x = x°||.a (
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PCG (ICCG)

Preconditioning
Improve the spectrum of A.

M Ax = M7 b
Convergence
k+1
-1 _
x|l < 2l )Ly [ VEMEA L)
VEMTIA) +1

K(MA) < K(A).

Cholesky Decomposition
If Ae R™"is SPD,
A=rcL’
1C(0)
Let a;; € A and [;; € L£*, L* the matrix from the Cholesky
decomposition, such that /;; =0 if a;; = 0.
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DPCG

Deflation
P=I-AQ, PecR™"  QeR™"
Q=2ze1zT,  zeR™k £ eRKK
&= 2T AZ (Tang 2008, [7]).
Convergence

Deflated system

k+1
— %Kl 4 < 2l1x — x° VE(PA) -1 '
[Ix = x¥[|4 < 2[|x x||A< P 1

Deflated and preconditioned system

k+1
_1 _
Hx—xk|usz||x—x°||A< rer(MPA) 1) .

\/ /ﬂeff(M_l'P.A) +1
Kerf(MTIPA) < kerr(PA) < K(A).
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Deflation vectors

Recycling deflation (Clemens 2004, [8]).
Z =[xt %%, x971,

x"'s are solutions of the system.
Multigrid and multilevel (Tang 2009, [9]).

The matrices Z and Z7 are the restriction and prolongation matrices of
multigrid methods.
Subdomain deflation (Vuik 1999,[10]).

Proposal

Use solution of the system with various well configurations as
deflation vectors (Recycling deflation).

Use as deflation vectors the basis obtained from Proper Orthogonal
Decomposition (POD).
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Deflation vectors

Lemma 1. Let A € R"" be a non-singular matrix, such that

Ax = b, (1)
and x;,b; € R", i =1,...,m, b; are linearly independent (/.i.) such that:

Ax; = by ()

The following equivalence holds

m m
X = Z CiXj <~ b= Z cib;. (3)
i=1 i=1
Proof = Substituting x from (3) into Ax = b, and using linearity of A and(2):

Ax = Z.AC,'X,' = A(cixy + ... + CmXm)

i=1

m
= Acixy + ... + Acpxm = c1by + ... + cmb = E cib;. (4)
i=1
Similar proof for <
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Deflation vectors

Lemma 2. If the the deflation matrix Z is constructed with a set of m vectors
Z=[x1 . o Xm],

such that x = Z:n:l ¢ix;, with x; [.i., then the solution of system Ax = b is
achieved within one iteration of DCG.
Proof.

The relation between X and x is given as:
x=0b+7P'x (5)
For the first term Qb, taking b = 27;1 c;b; we have:

Ob=zetzT (Z c,-b,-> =2(2TAz)tz27 <Z c,-Ax,-) = Lemma 1
i=1 i=1
=Z(ZTAZ) 127 (Axict + oo 4+ Axmep) = Z(2TAZ) 12T AZc

m
= Zc = c1X1 + OXo + €3X3 + X4 + C5X5 = E CiXj = X.
i=1
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Proper Orthogonal Decomposition (POD)

POD: find an 'optimal’ basis for a given data set (Markovinovi¢ 2009 [1],
Astrid 2011, [2])

¢ = [¢p1, b2, ...0/] € R™
@i, basis functions.
o Get the snapshots
X = [x1,X2, .- Xm]-
o/ elgenvectors of R satisfying:

%;A< O<a<l.

R := lXXT:iix-xT
T m T om& g
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Numerical experiments

Case 1. Heterogeneous permeability.
The experiments were performed for single-phase flow, with the following

characteristics:

Grid size nx x ny grid cells, nx = ny = 64.
Permeability 1 mD.

W1 = W2 = W3 = W4 = -1 bars.

W5 = +4 bars.

Neumann boundary conditions.

Figure © Heterogeneous
permeability layers.

Vuik, Diaz, Jansen (TU Delft) P-BPFS CMCIM, 2016 16 / 26



Snapshots

z1: W1 = 0 bars, W2 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z5: W2 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z3: W3 = 0 bars, W1 = W3 = W4 = -1 bars, W5 = b5 = +3 bars.
z4: W4 = 0 bars, W1 = W2 = W3 = -1 bars, W5 = b5 = +3 bars.
z5: W1 = W2 = W3 = W4 = -1 bars, W5 = b5 = +4 bars.
Results

oz (mD) 101 103 10-° 10~

ICCG 90 131 65* 64*

DICCG, 1 1 1* 1*

DICCGs 1 500* 500* 500*

Number of iterations for different contrast in the permeability of the layers
(o1 = 1mD) for the ICCG and DICCG methods, tolerance of 107!, snapshots 107!,
DICCG, is the method with 4 deflation vectors and DICCGs is the method with 5

deflation vectors.
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Numerical experiments (Heterogeneous permeability)

Condition number of an SPD matrix.

Amax(A)
A) = e s
/{’2( ) )\min(A)
o2 (mD) 1071 103 10-° 107
k(A) 2.6 x 103 [ 2.4x10° | 2.4 x 107 | 2.4 x 10°
k(M~LA) 206.7 8.3 x10% | 8.3 x 10° | 8.3 x 107
Kerr(M~L1PA) 83.27 6x 103 [1x10% |6 x107

Table : Condition number for various permeability contrasts between the layers, grid
size of 32 x 32, 01 = 1mD.
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Numerical experiments (Heterogeneous permeability)

Relative error

= T —” = with x the true solution and x* the approximation
X||2

Taking e = 1077.

o2 (mD) 1071 10-3 10-° 107

— _ 10—7 -9 —10 —-12 —14
tol = 52(,\/‘,9_1/4) = S (MTA) 5x 10 1x10 10 1x10

— _ 10—7 -8 —10 —12 —14
tol = —itpy = ity | L% 10 2x10 10 2x10

Table © Tolerance needed for various permeability contrast between the layers, grid
size of 32 x 32, o1 = 1mD, for an error of e = 1077,
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Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

Grid 16 x 56 | 30x 110 | 46x 166 | 60 x 220
- - size
i Contrast | 1.04 2.52 2.6 2.8
* i (x107)
. Table - Contrast in permeability for different grid sizes
(Umax/amin)-
Condition num- | value
of e 4 ber
B #(A) 2.2 x 10°
(a) 16 x56  (b) 60 x 220 r(M~TA) 377
Kerrf (M1 PA) 82.7

Figure - Permeability field, 16 x 56
and 60 x 220 grid cells. Table : Table with the condition number of the SPE10

model, grid size of 16 x 56.
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Numerical experiments (SPE 10)

SPE 10 model, 2nd layer

Tol Method | 16 x 56 | 30 x 110 | 46 x 166 | 60 x 220
(snap-
shots)
ICCG 34 73 126 159
1071 DICCG, | 33 72 125 158
DICCGs | 500%* 500%* 500%* 500%*
1073 DICCG, | 18 38 123 151
DICCGs | 18 35 123 150
107° DICCG, | 11 21 27 55
DICCGs | 9 22 23 54
10~7 DICCG, |1 1 1 1
DICCGs | 1 1 1 1

Table © Number of iterations for ICCG and DICCG, diverse tolerance for
the snapshots, different grid sizes. DICCG, is computed with 4 deflation
vectors, DICCGs with 5.
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Numerical experiments

SPE 10 model, 85 layers

icca icca

og(IIM "1, /1M bll,)

Figure © Convergence plot ICCG . ) .

and DICCG. Figure © Solution ICCG and DICCG.
Method Number or iterations
ICCG 1029
DICCG 1

Table - Number of iterations ICCG and DICCG, relative tolerance 10—,
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Conclusions

o Solution is reached in 1 iteration for DICCG method.

o Number of iterations for the DICCG method does not depend on the
contrast between the coefficients (Heterogeneous permeability
example).

o Number of iterations for the DICCG method does not depend on the
grid size (SPE 10 example).

o The choice of deflation vectors is important for a good performance
of DICCG.
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o Study the computation time of DICCG.
o Work with compressible models.
o Other snapshots?.

o Use of POD for the selection of deflation vectors.
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