Iterative Helmholtz Solvers Accuracy of iterative Helmholtz solutions **Delft University of Technology**

Kees Vuik and Vandana Dwarka March 28th, 2018

Kees Vuik and Vandana Dwarka (TU Delft)15th Copper Mountain Conference On Iterativ

March 28th, 2018 1 / 24

Outline

1 Aim and Impact

2 Introduction

3 Pollution

4 Our Approach

5 Conclusion

6 Next Up

Aim and Impact

- Alert solver developers to keep accuracy of solution in mind
- Research sharper error bounds
- Allows a priori theoretical error estimation
- Research pollution through spectral methods
- Pinpoint pollution in 2D and 3D

Introduction - The Helmholtz Equation

Homogeneous Helmholtz equation + BC's

$$(-
abla^2 - k^2) \, u(\mathbf{x}) = \mathbf{0}, \mathbf{x} \in \Omega \subseteq \mathbb{R}^n$$

- k is the wave number: $k = \frac{2\pi}{\lambda}$
- Practical applications in seismic and medical imaging¹

¹Source: https://earthquake.usgs.gov/image & http://math.mit.edu/icg/resources/teaching/18.336-spring2014/

Introduction - Analytical Model

• Analytical 1D model problem

$$-\frac{d^2u}{dx^2} - k^2 u = \delta(x - \frac{L}{2}),$$

$$u(0) = 0, u(L) = 0,$$

$$x \in \Omega = [0, L] \subseteq \mathbb{R},$$

• Sturm-Liouville + Green's function ⇒ exact solution

$$G(x, L/2) = \frac{2}{L} \sum_{j=1}^{\infty} \frac{\sin(j\pi L/2)}{j^2 \pi^2 - k^2/L^2} \sin(j\pi x/L)$$
$$\lambda_j = j^2 \pi^2 - k^2$$
$$k \neq \frac{j\pi}{L}$$
$$j = 1, 2, 3, \dots$$

Introduction - Numerical Model

- Discretization on $\Omega = [0, 1]$
- Most used second-order finite difference with $h = \frac{1}{n}$
- $k \approx \lfloor 2\pi/\#gpw \rfloor \Rightarrow kh$ is the grid resolution
- Rule of thumb kh = 0.625
- We obtain a linear system $A\hat{u} = f$

$$A = \frac{1}{h^2} \operatorname{tridiag}[-1 \ 2 - (kh)^2 \ -1],$$

$$\hat{\lambda}_j = \frac{1}{h^2} \left[2 - 2\cos(j\pi h) - k^2 h^2\right],$$

$$j = 1, 2, 3, \dots, n - 1,$$

$$A \in \mathbb{R}^{(n-1) \times (n-1)}.$$

• A is real, symmetric, normal, indefinite, tridiagonal and sparse

Introduction - Spectral Properties

- Near-null eigenvalues near intersection with origin
- The index where this happens for the analytical case is

$$\begin{split} \lambda_{j_{\min}} &= 0 \Rightarrow j^2 \pi^2 \approx k^2 \pi^2, \\ &\Rightarrow j_{\min} = \lfloor \frac{k}{\pi} \rfloor \text{ or } \lceil \frac{k}{\pi} \rceil. \end{split}$$

• The index where this happens for the numerical case is

$$\hat{\lambda}_{\hat{j}_{\min}} = 0 \Rightarrow \frac{1}{h^2} \left[2 - 2\cos(j\pi h) \right] \approx k^2$$
$$\Rightarrow \hat{j}_{\min} = \operatorname{round}\left[\frac{\arccos(1 - \kappa^2)}{\pi h}\right]$$

- Near-null eigenvalues ⇒ convergence issues ⇒ Deflation
- Near-null eigenvalues ⇒ accuracy issues ⇒ Pollution
- Our aim: study both cause and effect simultaneously

Pollution - Introduction

- Numerical dispersion due to different numerical wave number
- Pollution error accumulates
- Non-accurate error estimates
- Total error is (Babuska, I., et al., 1997) $\frac{\|u-\hat{u}\|}{\|u\|} \leq C_1 kh + C_2 k^3 h^2, \ kh < 1$
- Phase error is $\left|\tilde{k}-k\right| = \mathcal{O}(k^2h^2)$
- Error grows with k
- Set $k^3h^2 < 1$ or use higher-order discretization

Pollution - Error Bound - I

• Take
$$k=rac{2\pi}{\lambda}$$
, $\lambda=rac{2\pi}{\omega n}\Rightarrow k=\omega n$

• Second order FD scheme for (Runborg, O., 2012)

$$\underbrace{\frac{-u_{j+1}+2u_j-u_{j-1}}{h^2}}_{A} - \underbrace{\frac{\omega^2 n^2 h^2 u_j}{h^2}}_{B} = 0$$

- Solution for exact ωn : $u(x) = e^{i\omega nx_j}$ (1)
- Solution for numerical $\omega \tilde{n}$: $u_j = e^{i\omega \tilde{n}x_j}$ (2)
- Substitute (1) into A & (2) into B

$$-u_{j+1} + 2u_j - u_{j-1} = e^{i\omega\tilde{n}x_j} 2 \left[1 - \cos(\omega\tilde{n}h)\right]$$
(3)

• If \tilde{n} solves (3) then

$$\frac{2(1 - \cos{(\omega \tilde{n} h)})}{h^2} - \omega^2 n^2 h^2 = 0 \quad (4)$$

Pollution - Error Bound - II

• Expand cosine, substitute in (4) and divide by ω^2

$$\tilde{n}^2 - n^2 + \mathcal{O}(\omega^2 h^2) = 0$$

• Error due to different wave speed \tilde{n} is

$$|\tilde{n} - n| = \mathcal{O}(\omega^2 h^2), \text{ for } \tilde{n} \approx n$$

Error due to dispersion

$$\left|e^{i\omega nx_{j}}-e^{i\omega \tilde{n}x_{j}}\right|=\left|1-e^{i(\tilde{n}-n)x_{j}}
ight|\leq C\omega\left|\tilde{n}-n
ight|\leq C\omega^{3}h^{2}$$

• Total error for the model problem

Rel. err. =
$$\frac{\|u - \hat{u}\|}{\|u\|} \le C_1 kh + C_2 k^3 h^2, \ kh < 1$$

Pollution - Error

Relative error between exact and numerical solution for kh = 0.625

k	п	Rel. error	k ³ h ²	k	n	Rel. error	k ³ h ²
100	160	0.5770	39	102	164	62.0447	39
200	320	1.9347	78	139	224	3.8516	53
300	480	4.2584	117	212	332	1.1111	80
400	640	1.1925	156	312	500	38.5703	121
500	800	0.9783	195	485	776	172.9903	189

- Large and unregular error
- k^3h^2 bound is not sharp

Pollution - 1D

Exact and numerical solution for k = 100 (L) and k = 102 (R)

Pollution - Dispersion Correction

- Accuracy comes with uneconomical linear systems
- Recall phase error is $\left| ilde{k} k
 ight| = \mathcal{O}(k^2 h^2)$
- Dispersion correction by setting (Babuska, I., et al., 1997)

$$\tilde{k} = \sqrt{\frac{2(1 - \cos{(kh)})}{h^2}}$$

- Construct matrix A using \tilde{k} instead of k
- Correction with \tilde{k} possible in 1D
- In higher dimensions infinite directions

Pollution - Error

Relative error and index j_{\min} , \hat{j}_{\min} of the smallest analytical and numerical eigenvalue for kh = 0.625 using k (L) and \tilde{k} (R)

k	<i>j</i> min	\hat{j}_{min}	Rel. error	ĩ	<i>j</i> min	, Ĵmin	Rel. error
100	32	32	0.5770	98	32	32	0.0685
200	64	65	1.9347	197	64	64	0.0681
300	95	97	4.2584	295	95	95	0.0680
400	127	129	1.1925	394	127	127	0.0678
500	159	162	0.9783	492	159	159	0.0680

- Pollution if kernel misaligned
- Spectral effect of \tilde{k} on kernel
- Sign of smallest eigenvalue also matters

Our Approach - Introduction

- Primary literature focus on differences k and \tilde{k}
- Not much literature on role of eigenvalues
- Our aim: shed light on role of near nullspace eigenvalue(s)
- Main hypothesis: the accuracy of the near nullspace numerical eigenvalues are related to the pollution
- We propose an error bound incorporating the eigenvalues

Our Approach - Spectral Properties

- We use eigenvalues to obtain theoretical sharper bound
- Total error now becomes

$$\frac{\|u - \hat{u}\|}{\|u\|} \le \frac{\sqrt{\left(\frac{2\pi^2}{3}\frac{1}{\hat{\lambda}_{j_{\min}}^2} + \frac{\pi^2}{2\lambda_{j_{\min}}^2}\right)}}{\|u\|}$$

- Error grows with discrepancy between $\lambda_{j_{\min}}$ and $\hat{\lambda}_{\hat{j}_{\min}}$.
- As k increases $\Rightarrow j_{\min} \neq \hat{j}_{\min}$

Our Approach - New Upper Bound

Construction of upper bound:

- 1 Orthonormalize basis and evaluate at discrete points
- 2 Rewrite error as

$$\begin{aligned} |u - \hat{u}|| &= \left\| 2\sum_{j=1}^{n} \sin(j\pi x') \left(\frac{1}{\lambda_j} - \frac{1}{\hat{\lambda}_j} \right) \right\|, \\ &= \sqrt{4\sum_{j=1}^{n} \sin(j\pi x')^2 \left(\frac{1}{\lambda_j} - \frac{1}{\hat{\lambda}_j} \right)^2} \end{aligned}$$

- 3 Compute \$\lambda_{j_{min}}\$ and \$\hat{\lambda}_{\hat{j}_{min}}\$
 4 Find recursive relation for ratio's between eigenvalues
- 5 Express and bound sum in terms of ratio

$$\|u-\hat{u}\| \leq \sqrt{\left(rac{2\pi^2}{3}rac{1}{\hat{\lambda}_{\hat{j}_{\min}}^2}+rac{\pi^2}{2{\lambda_{j_{\min}}}^2}
ight)}$$

Our Approach - Preliminary Results

Relative error and new bound (E) for kh = 0.625

k	п	Rel. error	E	k	п	Rel. error	E
100	160	0.5770	5.0369	102	164	62.0447	67.9444
200	320	1.9347	3.2117	139	224	3.8516	4.6088
300	480	4.2584	4.7559	212	332	1.1111	1.7703
400	640	1.1925	1.4373	312	500	38.5703	43.0448
500	800	0.9783	1.7980	485	776	172.9903	191.9262

- New bound (E) sharper
- Allows detailed study of error in terms of spectrum
- Connect results to convergence

Our Approach - Alternate Correction

- Use information from eigenvalues instead of \tilde{k}
- Solve system

$$egin{aligned} & A_{c}u=f, \ ext{where} \ A_{c}=A+cI, \ & c=-\lambda_{\mathbf{j}_{\min}}+\hat{\lambda}_{\mathbf{\hat{j}}_{\min}}, \end{aligned}$$

Note this correction also possible in higher dimensions

Our Approach - Error

Relative error and index j_{\min} , \hat{j}_{\min} of the smallest analytical and numerical eigenvalue for kh = 0.625 using eigenvalue correction

k	Ĵmin	, Ĵmin	Rel. error
100	32	32	0.0747
200	64	64	0.0946
300	95	95	0.0344
400	127	127	0.0213
500	159	159	0.0100

- No pollution if kernel aligned
- Drawback: requires smallest analytical and numerical eigenvalue
- Use to study sharper pollution progression in 2D & 3D

Our Approach - Dispersion Correction (2D)

Exact (L), Adjusted Numerical (C) and Unadjusted Numerical (R) Solution for k = 30 (Top) and k = 100 (Bottom)

Conclusion

- Fast solvers may lead to inaccurate solutions
- Phase differences 'pollute' the numerical solution
- Bound error using smallest eigenvalues
- For the first time: dispersion correction in 2D <u>without</u> increasing problem size and/or switching to higher-order schemes.
- Relate error to convergence properties

Next Up - Accelerated Convergence

References

- Upcoming articles http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_ helmholtz.html
- Further reading

D. Lahaye, J.M. Tang, and C. Vuik Modern Solvers for Helmholtz Problems. Birkhäuser, 2017.

F. Ihlenburg, I. Babuska.

Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation.

International Journal for Numerical Methods in Engineering, 38(22):3745-3774, 1995.

I. Babuska, S. Sauter.

Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers?

SIAM Journal on Numerical Analysis, 34(6):23922423, 1997.