TUDelft

Efficient POD-Based deflation methods for the solution of ill-conditioned linear systems

Gabriela B. Diaz Cortes ${ }^{1}$, Kees Vuik ${ }^{1}$, Jan Dirk Jansen ${ }^{2}$.

${ }^{1}$ EWI
Delft University of Technology
${ }^{2} \mathrm{CiTG}$
Delft University of Technology
$15^{\text {th }}$ Copper Mountain Conference on Iterative Methods, March 2018

SPE 10 benchmark, $60 \times 220 \times 85$ grid cells, $\kappa(A)=2.2 \times 10^{6}$.

SPE 10 benchmark, $60 \times 220 \times 85$ grid cells, $\kappa(A)=2.2 \times 10^{6}$.

Method	Number of iterations
ICCG, $\kappa\left(M^{-1} A\right)=377$	1029

SPE 10 benchmark, $60 \times 220 \times 85$ grid cells, $\kappa(A)=2.2 \times 10^{6}$.

Method	Number of iterations
ICCG, $\kappa\left(M^{-1} A\right)=377$	1029
DICCG, $\kappa_{\text {eff }}\left(M^{-1} P A\right)=82.7$	1

Table of Contents

(1) Problem Definition

(2) Linear Solvers
(3) Proposed deflation methodology
(4) Results
(5) Conclusions
(6) Bibliography

Table of Contents

(1) Problem Definition

Problem Definition

Reservoir Simulation

Governing equations [1]:

- Principle of mass conservation (for a fluid phase α);

$$
\begin{equation*}
\frac{\partial\left(\phi \rho_{\alpha} S_{\alpha}\right)}{\partial t}+\nabla \cdot\left(\rho_{\alpha} \mathbf{v}_{\alpha}\right)=\rho_{\alpha} \boldsymbol{q}_{\alpha} \tag{1}
\end{equation*}
$$

- Darcy's law:

$$
\begin{equation*}
\mathbf{v}_{\alpha}=-\lambda_{\alpha}\left(\nabla p_{\alpha}-\rho_{\alpha} g \nabla d\right) \tag{2}
\end{equation*}
$$

Fluid

S_{α} Saturation
$\lambda_{\alpha}\left(S_{\alpha}\right)=\frac{\overrightarrow{\mathbf{k}} k_{r \alpha}\left(S_{\alpha}\right)}{\mu_{\alpha}}$ Mobility
ρ_{α} Density
μ_{α} Viscosity
p_{α} Pressure
Rock
ϕ Porosity
$\overrightarrow{\mathrm{K}}$ Permeability
$k_{r \alpha}\left(S_{\alpha}\right)$ Relative
permeability

Reservoir
d Depth
g Gravity
q_{α} Sources

Problem Definition

Single-phase flow (Incompressible)

$$
\begin{equation*}
-\nabla \cdot \frac{\overrightarrow{\mathbf{K}}}{\mu_{\alpha}}\left(\nabla p_{\alpha}-\rho_{\alpha} g \nabla d\right)=q_{\alpha} \tag{3}
\end{equation*}
$$

Problem Definition

Single-phase flow (Incompressible)

$$
\begin{equation*}
-\nabla \cdot \frac{\overrightarrow{\mathbf{K}}}{\mu_{\alpha}}\left(\nabla p_{\alpha}-\rho_{\alpha} g \nabla d\right)=q_{\alpha} \tag{3}
\end{equation*}
$$

Two-phase flow (Fractional flow formulation)

- Pressure

$$
\begin{equation*}
-\nabla \cdot\left(\lambda \nabla p_{n w}\right)=q-\nabla\left[\lambda_{w} \nabla p_{c}+\left(\lambda_{n w} \rho_{n w}+\lambda_{w} \rho_{w}\right) g \nabla d\right] \tag{4}
\end{equation*}
$$

- Total velocity

$$
\mathbf{v}=\mathbf{v}_{w}+\mathbf{v}_{n w}
$$

- Saturation

$$
\begin{array}{ll}
\phi \frac{\partial S_{w}}{\partial t}+\nabla \cdot\left[f_{w}\left(\mathbf{v}+\lambda_{n w} \Delta \rho g \nabla d\right)\right]+\nabla \cdot\left(f_{w} \lambda_{n w} \nabla p_{c}\right)=q_{w} \\
\lambda=\lambda_{n w}+\lambda_{w} & \Delta \rho=\rho_{w}-\rho_{n w} \\
p_{c}\left(S_{w}\right)=p_{n}-p_{w} & f_{w}\left(S_{w}\right)=\frac{\lambda_{w}\left(S_{w}\right)}{\lambda_{w}\left(S_{w}\right)+\lambda_{n w}\left(S_{n w}\right)}
\end{array}
$$

Problem Definition

Discretization, incompressible single-phase 2D problem
Combining Darcy's law and mass balance equation

$$
-\nabla \cdot \lambda_{\alpha}\left(\nabla p_{\alpha}-\rho_{\alpha} g \nabla d\right)=q_{\alpha}
$$

No gravity terms

$$
\begin{aligned}
& -(\nabla \cdot \lambda \nabla p)_{x}=-\frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial p}{\partial x}\right)= \\
& =\frac{\lambda_{i+\frac{1}{2}, j}\left(p_{i+1, j, l}-p_{i, j, l}\right)-\lambda_{i-\frac{1}{2}, j, l}\left(p_{i, j, l}-p_{i-1, j, l}\right)}{(\Delta x)^{2}} \\
& -\nabla \cdot \lambda \nabla p=\mathbf{T}^{1} \mathbf{p}=\mathbf{q} \quad T_{i-\frac{1}{2}, j, l}=\frac{\Delta y}{\Delta x} \lambda_{i-\frac{1}{2}, j, l}
\end{aligned}
$$

Problem Definition

Discretization, incompressible single-phase 2D problem
Combining Darcy's law and mass balance equation

$$
-\nabla \cdot \lambda_{\alpha}\left(\nabla p_{\alpha}-\rho_{\alpha} g \nabla d\right)=q_{\alpha}
$$

No gravity terms

$$
\begin{aligned}
& -(\nabla \cdot \lambda \nabla p)_{x}=-\frac{\partial}{\partial x}\left(\lambda_{x} \frac{\partial p}{\partial x}\right)= \\
& =\frac{\lambda_{i+\frac{1}{2}, j}\left(p_{i+1, j, l}-p_{i, j, l}\right)-\lambda_{i-\frac{1}{2}, j, l}\left(p_{i, j, l}-p_{i-1, j, l}\right)}{(\Delta x)^{2}} \\
& -\nabla \cdot \lambda \nabla p=\mathbf{T}^{1} \mathbf{p}=\mathbf{q} \quad T_{i-\frac{1}{2}, j, l}=\frac{\Delta y}{\Delta x} \lambda_{i-\frac{1}{2}, j, l}
\end{aligned}
$$

Two phases Incompressible problem

$$
-\nabla \cdot\left(\mathbf{f}\left(\mathbf{S}^{n}\right) \lambda \nabla \mathbf{p}^{n}\right)=\mathbf{T}\left(\mathbf{S}^{n}\right) \mathbf{p}^{n}=\mathbf{q}^{n}
$$

${ }^{1}$ Transmissibility matrix [2].

Table of Contents

(1) Problem Definition

(2) Linear Solvers

Conjugate Gradient Method (CG)

Linear system (SPD)

$\mathbf{A x}=\mathbf{b}$	
Single phase	Two phases
$\mathbf{T} \mathbf{p}=\mathbf{q}$	$\mathbf{T}\left(\mathbf{S}^{n}\right) \mathbf{p}^{n}=\mathbf{q}^{n}$

Conjugate Gradient Method (CG)

Linear system (SPD)

$\mathbf{A x}=\mathbf{b}$	
Single phase	Two phases
$\mathbf{T} \mathbf{p}=\mathbf{q}$	$\mathbf{T}\left(\mathbf{S}^{n}\right) \mathbf{p}^{n}=\mathbf{q}^{n}$

Successive approximations to obtain a more accurate solution \times [3]

$$
\begin{gathered}
\mathbf{x}^{0}, \quad \text { initial guess } \\
\vdots \\
\mathbf{x}^{k}=\mathbf{x}^{k-1}+\mathbf{M}^{-1} \mathbf{r}^{k-1}, \quad \mathbf{r}^{k}=\mathbf{b}-\mathbf{A} \mathbf{x}^{k-1} . \\
\min _{\mathbf{x}^{k} \in \kappa_{k}\left(\mathbf{A}, \mathbf{r}^{0}\right)}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}}, \quad\|\mathbf{x}\|_{\mathbf{A}}=\sqrt{\mathbf{x}^{T} \mathbf{A} \mathbf{x}} .
\end{gathered}
$$

Conjugate Gradient Method (CG)

Linear system (SPD)

$\mathbf{A x}=\mathbf{b}$	
Single phase	Two phases
$\mathbf{T} \mathbf{p}=\mathbf{q}$	$\mathbf{T}\left(\mathbf{S}^{n}\right) \mathbf{p}^{n}=\mathbf{q}^{n}$

Successive approximations to obtain a more accurate solution \times [3]

$$
\begin{gathered}
\mathbf{x}^{0}, \quad \text { initial guess } \\
\vdots \\
\mathbf{x}^{k}=\mathbf{x}^{k-1}+\mathbf{M}^{-1} \mathbf{r}^{k-1}, \quad \mathbf{r}^{k}=\mathbf{b}-\mathbf{A} \mathbf{x}^{k-1} . \\
\min _{\mathbf{x}^{k} \in \kappa_{k}\left(\mathbf{A}, \mathbf{r}^{0}\right)}\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}}, \quad\|\mathbf{x}\|_{\mathbf{A}}=\sqrt{\mathbf{x}^{T} \mathbf{A} \mathbf{x}} \\
\text { Convergence } \\
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa(\mathbf{A})}-1}{\sqrt{\kappa(\mathbf{A})}+1}\right)^{k+1} .
\end{gathered}
$$

PCG (ICCG)

Preconditioning

Improve the spectrum of \mathbf{A}.

$$
\mathbf{M}^{-1} \mathbf{A x}=\mathbf{M}^{-1} \mathbf{b} .
$$

PCG (ICCG)

Preconditioning

Improve the spectrum of \mathbf{A}.

$$
\mathbf{M}^{-1} \mathbf{A x}=\mathbf{M}^{-1} \mathbf{b} .
$$

Convergence

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)}-1}{\sqrt{\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)}+1}\right)^{k+1}, \\
\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right) \leq \kappa(\mathbf{A})
\end{gathered}
$$

PCG (ICCG)

Preconditioning

Improve the spectrum of \mathbf{A}.

$$
\mathbf{M}^{-1} \mathbf{A x}=\mathbf{M}^{-1} \mathbf{b} .
$$

Convergence

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)}-1}{\sqrt{\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right)}+1}\right)^{k+1} \\
\kappa\left(\mathbf{M}^{-1} \mathbf{A}\right) \leq \kappa(\mathbf{A})
\end{gathered}
$$

Cholesky Decomposition If $\mathbf{A} \in \mathbf{R}^{n \times n}$ is $S P D$,

$$
\mathbf{A}=\mathcal{L} \mathcal{L}^{T}
$$

Deflation

$$
\begin{gathered}
\mathbf{P}=\mathbf{I}-\mathbf{A Q}, \quad \mathbf{P} \in \mathbb{R}^{n \times n}, \quad \mathbf{Q} \in \mathbb{R}^{n \times n}, \\
\mathbf{Q}=\mathbf{Z E}^{-1} \mathbf{Z}^{T}, \quad \mathbf{Z} \in \mathbb{R}^{n \times k}, \\
\mathbf{E}=\mathbf{Z}^{T} \mathbf{A Z}(\text { Tang 2008, [4]). }
\end{gathered}
$$

DPCG

Deflation

$$
\begin{gathered}
\mathbf{P}=\mathbf{I}-\mathbf{A Q}, \quad \mathbf{P} \in \mathbb{R}^{n \times n}, \quad \mathbf{Q} \in \mathbb{R}^{n \times n}, \\
\mathbf{Q}=\mathbf{Z E}^{-1} \mathbf{Z}^{T}, \\
\mathbf{Z} \in \mathbb{R}^{n \times k}, \\
\mathbf{E}=\mathbf{Z}^{T} \mathbf{A Z}(\text { Tang 2008, }[4]) .
\end{gathered}
$$

Convergence
Deflated system

$$
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa_{\text {eff }}(\mathbf{P A})}-1}{\sqrt{\kappa_{\text {eff }}(\mathbf{P A})}+1}\right)^{k+1}
$$

DPCG

Deflation

$$
\begin{gathered}
\mathbf{P}=\mathbf{I}-\mathbf{A Q}, \quad \mathbf{P} \in \mathbb{R}^{n \times n}, \quad \mathbf{Q} \in \mathbb{R}^{n \times n}, \\
\mathbf{Q}=\mathbf{Z E}^{-1} \mathbf{Z}^{T}, \\
\mathbf{Z} \in \mathbb{R}^{n \times k}, \\
\mathbf{E}=\mathbf{Z}^{T} \mathbf{A Z}(\text { Tang 2008, }[4]) .
\end{gathered}
$$

Convergence
Deflated system

$$
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa_{\text {eff }}(\mathbf{P A})}-1}{\sqrt{\kappa_{\text {eff }}(\mathbf{P A})}+1}\right)^{k+1}
$$

Deflated and preconditioned system

$$
\begin{gathered}
\left\|\mathbf{x}-\mathbf{x}^{k}\right\|_{\mathbf{A}} \leq 2\left\|\mathbf{x}-\mathbf{x}^{0}\right\|_{\mathbf{A}}\left(\frac{\sqrt{\kappa_{\text {eff }}\left(\mathbf{M}^{-1} \mathbf{P A}\right)}-1}{\sqrt{\kappa_{\text {eff }}\left(\mathbf{M}^{-1} \mathbf{P A}\right)}+1}\right)^{k+1} . \\
\kappa_{\text {eff }}\left(\mathbf{M}^{-1} \mathbf{P A}\right) \leq \kappa\left(\mathbf{M}^{-1} \mathbf{A}\right) \leq \kappa(\mathbf{A}) .
\end{gathered}
$$

Deflation vectors

Recycling deflation (Clemens 2004, [5]).

$$
\mathbf{Z}=\left[\mathbf{x}^{1}, \mathbf{x}^{2}, \mathbf{x}^{q-1}\right]
$$

x^{i} 's are solutions of the system.
Multigrid and multilevel (Tang 2009, [6]).
The matrices \mathbf{Z} and \mathbf{Z}^{T} are the restriction and prolongation matrices of multigrid methods.
Subdomain deflation (Vuik 1999,[7]).

* \mathbf{Z} is obtained from a POD basis and used to construct a preconditioner (Pasetto et al. 2017 [8]).

Deflation vectors

Recycling deflation (Clemens 2004, [5]).

$$
\mathbf{Z}=\left[\mathbf{x}^{1}, \mathbf{x}^{2}, \mathbf{x}^{q-1}\right]
$$

x^{i} 's are solutions of the system.
Multigrid and multilevel (Tang 2009, [6]).
The matrices \mathbf{Z} and \mathbf{Z}^{T} are the restriction and prolongation matrices of multigrid methods.
Subdomain deflation (Vuik 1999,[7]).

* \mathbf{Z} is obtained from a POD basis and used to construct a preconditioner (Pasetto et al. 2017 [8]).

Proposal
Use solution of the system with diverse rhs as deflation vectors (Recycling deflation).
Use as deflation vectors the basis obtained from Proper Orthogonal Decomposition (POD).

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given set of vectors (Markovinović 2009 [9], Astrid 2011 [10])

$$
\Phi=\left[\phi_{1}, \phi_{2}, \ldots . \phi_{l}\right] \in \mathbb{R}^{n \times I}
$$

ϕ_{i}, basis functions.

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given set of vectors (Markovinović 2009 [9], Astrid 2011 [10])

$$
\Phi=\left[\phi_{1}, \phi_{2}, \ldots . \phi_{l}\right] \in \mathbb{R}^{n \times I}
$$

ϕ_{i}, basis functions.

- Get the snapshots

$$
\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{m}\right] .
$$

Proper Orthogonal Decomposition (POD)

POD: find an 'optimal' basis for a given set of vectors (Markovinović 2009 [9], Astrid 2011 [10])

$$
\Phi=\left[\phi_{1}, \phi_{2}, \ldots \phi_{l}\right] \in \mathbb{R}^{n \times l}
$$

ϕ_{i}, basis functions.

- Get the snapshots

$$
\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{m}\right] .
$$

- Obtain / eigenvectors of \mathbf{C} satisfying:

$$
\frac{\sum_{j=1}^{l} \lambda_{j}}{\sum_{j=1}^{m} \lambda_{j}} \leq \alpha, \quad 0<\alpha \leq 1
$$

$$
\mathbf{C}:=\frac{1}{m} \mathbf{X} \mathbf{X}^{T} \equiv \frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

Table of Contents

(1) Problem Definition

(2) Linear Solvers
(3) Proposed deflation methodology
(5) Conclusions

Deflation vectors

Single-phase, $\mathbf{T p}^{n}=\mathbf{q}^{n}$

- Recycling

Compute independent solutions with ICCG

$$
\mathbf{T} \mathbf{p}_{i}=\mathbf{q}_{i}
$$

Construct Z
$\mathbf{Z}=\left[\begin{array}{lll} & & \\ \mathbf{p}_{1} & \cdots & \mathbf{p}_{n}\end{array}\right]$,

Use Z

to solve
$\mathbf{T p}=\mathbf{q}$.

Deflation vectors

Single-phase, $\mathbf{T p}^{n}=\mathbf{q}^{n}$

- Recycling

Compute independent
Construct Z
Use Z solutions with ICCG

$$
\mathbf{T} \mathbf{p}_{i}=\mathbf{q}_{i}, \quad \mathbf{Z}=\left[\begin{array}{lll}
& & \\
\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}
\end{array}\right], \quad \mathbf{T} \mathbf{p}=\mathbf{q}
$$ to solve

Two-phases, $\mathbf{T}^{n} \mathbf{p}^{n}=\mathbf{q}^{n}$

- Moving window, solving step t

Compute
$t-1$ snapshots (ICCG)

$$
\mathbf{T}^{i} \mathbf{p}^{i}=\mathbf{q}^{i}
$$

Construct $\mathbf{Z}_{m}=P O D\left(\mathbf{p}_{i}^{\prime} s\right)$
$\mathbf{Z}_{m}=\left[\begin{array}{lll} & & \\ \phi^{1} & \cdots & \phi^{m}\end{array}\right]$,

Use \mathbf{Z}_{m}
to solve

$$
\mathbf{T}^{t} \mathbf{p}^{t}=\mathbf{q}^{t}
$$

Deflation vectors

Two-phases, $\mathbf{T}^{n} \mathbf{p}^{n}=\mathbf{q}^{n}$

- Training phase

Compute all solutions (ICCG) with rand rhs

> Construct
> $\mathbf{C}_{(1: n)}=\frac{1}{n} \mathbf{X X}^{\top}$

Compute POD basis and use it as \mathbf{Z}_{m}

$$
\begin{aligned}
& \mathbf{T}^{i} \mathbf{p}^{i}=\mathbf{q}^{i}, \quad \mathbf{C}_{(1: n)}=\left[\begin{array}{lll}
\mathbf{c}^{1} & \cdots & \mathbf{c}^{n}
\end{array}\right], \quad \mathbf{Z}_{m}=\operatorname{POD}\left(\mathbf{C}_{(1: n)}\right) \\
& \mathbf{X}=\left[\mathbf{p}^{1} \cdots \mathbf{p}^{n}\right]
\end{aligned}
$$

Use \mathbf{Z}_{m} to solve $\mathbf{T} \mathbf{p}=\mathbf{q}$ with diverse r hs.

Recycling deflation

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and x is the solution of

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{5}
\end{equation*}
$$

Recycling deflation

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and x is the solution of

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{5}
\end{equation*}
$$

Let $\mathbf{b}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, be a set of linearly independent vectors, different rhs, such that $\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}$,

Recycling deflation

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and x is the solution of

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{5}
\end{equation*}
$$

Let $\mathbf{b}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, be a set of linearly independent vectors, different rhs, such that $\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}$, and

$$
\mathbf{A} \mathbf{x}_{i}=\mathbf{b}_{i}
$$

Recycling deflation

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and \mathbf{x} is the solution of

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{5}
\end{equation*}
$$

Let $\mathbf{b}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, be a set of linearly independent vectors, different rhs, such that $\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}$, and

$$
\mathbf{A} \mathbf{x}_{i}=\mathbf{b}_{i}
$$

Then, the following equivalence holds

$$
\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i} \quad \Leftrightarrow \quad \mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i} \quad \mathbf{x}_{i} \text { l.i., proof Diaz et al. } 2018 \text { [11]. }
$$

Recycling deflation

Lemma 1. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a non-singular matrix, and x is the solution of

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{5}
\end{equation*}
$$

Let $\mathbf{b}_{i} \in \mathbb{R}^{n}, i=1, \ldots, m$, be a set of linearly independent vectors, different rhs, such that $\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}$, and

$$
\mathbf{A} \mathbf{x}_{i}=\mathbf{b}_{i}
$$

Then, the following equivalence holds

$$
\mathbf{b}=\sum_{i=1}^{m} c_{i} \mathbf{b}_{i} \quad \Leftrightarrow \quad \mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i} \quad \mathbf{x}_{i} \text { I.i., proof Diaz et al. } 2018 \text { [11]. }
$$

Lemma 2. If the the deflation matrix \mathbf{Z} is constructed with a set of m vectors

$$
\mathbf{Z}=\left[\begin{array}{llll}
\mathbf{x}_{1} & \ldots & \ldots & \mathbf{x}_{m}
\end{array}\right]
$$

such that $\mathbf{x}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}$, with $\mathbf{x}_{i} l . i$., then the solution of system (5) is obtained with one iteration of DCG.

Recycling deflation

Lemma 2 (Proof).

$$
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. } 2018 \text { [11]). }
$$

Recycling deflation

Lemma 2 (Proof).

$$
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. } 2018 \text { [11]). }
$$

$$
\mathbf{Q} \mathbf{b}=\mathbf{Z} \mathbf{E}^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A} \mathbf{Z}\right)^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{A x}_{i}\right)
$$

Recycling deflation

Lemma 2 (Proof).

$$
\begin{gathered}
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. 2018 [11]). } \\
\mathbf{Q} \mathbf{b}=\mathbf{Z} \mathbf{E}^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{A x}_{i}\right) \\
=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}(\mathbf{A Z c})=\mathbf{Z} \mathbf{c}
\end{gathered}
$$

Recycling deflation

Lemma 2 (Proof).

$$
\begin{gathered}
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. 2018 [11]). } \\
\mathbf{Q} \mathbf{b}=\mathbf{Z} \mathbf{E}^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{A \mathbf { x } _ { i }}\right) \\
=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}(\mathbf{A Z c})=\mathbf{Z} \mathbf{c} \\
= \\
=c_{1} \mathbf{x}_{1}+\ldots+c_{m} \mathbf{x}_{m}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}=\mathbf{x} .
\end{gathered}
$$

Recycling deflation

Lemma 2 (Proof).

$$
\begin{gathered}
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. 2018 [11]). } \\
\mathbf{Q} \mathbf{b}=\mathbf{Z E}^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{A x}_{i}\right) \\
=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}(\mathbf{A Z c})=\mathbf{Z} \mathbf{c} \\
=c_{1} \mathbf{x}_{1}+\ldots+c_{m} \mathbf{x}_{m}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}=\mathbf{x} . \\
\mathbf{A}\left(\mathbf{P}^{T} \hat{\mathbf{x}}\right)=\mathbf{P A} \hat{\mathbf{x}}=\mathbf{P b}=(\mathbf{I}-\mathbf{A Q}) \mathbf{b} \\
=\mathbf{b}-\mathbf{A Q} \mathbf{b}=\mathbf{b}-\mathbf{A} \mathbf{x}=0 \quad \Rightarrow \quad \mathbf{P}^{T} \hat{\mathbf{x}}=0
\end{gathered}
$$

Recycling deflation

Lemma 2 (Proof).

$$
\begin{gathered}
\left.\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}} \text { (Diaz et al. } 2018[11]\right) . \\
\mathbf{Q} \mathbf{b}=\mathbf{Z} \mathbf{E}^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{b}_{i}\right)=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}\left(\sum_{i=1}^{m} c_{i} \mathbf{A x}_{i}\right) \\
=\mathbf{Z}\left(\mathbf{Z}^{T} \mathbf{A Z}\right)^{-1} \mathbf{Z}^{T}(\mathbf{A Z} \mathbf{c})=\mathbf{Z} \mathbf{c} \\
=c_{1} \mathbf{x}_{1}+\ldots+c_{m} \mathbf{x}_{m}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}=\mathbf{x} . \\
\mathbf{A}\left(\mathbf{P}^{T} \hat{\mathbf{x}}\right)=\mathbf{P A} \hat{\mathbf{x}}=\mathbf{P b}=(\mathbf{I}-\mathbf{A Q}) \mathbf{b} \\
=\mathbf{b}-\mathbf{A Q} \mathbf{b}=\mathbf{b}-\mathbf{A} \mathbf{x}=0 \quad \Rightarrow \quad \mathbf{P}^{T} \hat{\mathbf{x}}=0 \\
\mathbf{x}=\mathbf{Q} \mathbf{b}+\mathbf{P}^{T} \hat{\mathbf{x}}=\mathbf{Q} \mathbf{b}=\mathbf{x} .
\end{gathered}
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}, \quad \mathbf{r}_{i}=\frac{\left\|\mathbf{r}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}}=\frac{\left\|\mathbf{b}_{i}-\mathbf{A} \mathbf{x}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}, \quad \mathbf{r}_{i}=\frac{\left\|\mathbf{r}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}}=\frac{\left\|\mathbf{b}_{i}-\mathbf{A} \mathbf{x}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon
$$

where, using as stopping criterion $\epsilon=10^{-\eta}$

$$
\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \mathbf{r}_{i}=\kappa_{2}(\mathbf{A}) \epsilon=\kappa_{2}(\mathbf{A}) \times 10^{-\eta}
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}, \quad \mathbf{r}_{i}=\frac{\left\|\mathbf{r}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}}=\frac{\left\|\mathbf{b}_{i}-\mathbf{A} \mathbf{x}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon
$$

where, using as stopping criterion $\epsilon=10^{-\eta}$

$$
\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \mathbf{r}_{i}=\kappa_{2}(\mathbf{A}) \epsilon=\kappa_{2}(\mathbf{A}) \times 10^{-\eta}
$$

After one iteration of DCG we obtain

$$
\mathbf{x}^{1}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}^{1(i)}, \text { and }
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}, \quad \mathbf{r}_{i}=\frac{\left\|\mathbf{r}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}}=\frac{\left\|\mathbf{b}_{i}-\mathbf{A} \mathbf{x}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon
$$

where, using as stopping criterion $\epsilon=10^{-\eta}$

$$
\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \mathbf{r}_{i}=\kappa_{2}(\mathbf{A}) \epsilon=\kappa_{2}(\mathbf{A}) \times 10^{-\eta}
$$

After one iteration of DCG we obtain

$$
\begin{gathered}
\mathbf{x}^{1}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}^{1(i)}, \text { and } \\
\frac{\left\|\mathbf{x}-\mathbf{x}^{1}\right\|_{2}}{\|\mathbf{x}\|_{2}}=\frac{\left\|\sum_{i=1}^{m} c_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{i}^{1}\right)\right\|_{2}}{\left\|\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \times 10^{-\eta}
\end{gathered}
$$

Accuracy of the snapshots

Error of an iterative method for an approximate solution \mathbf{x}_{i}^{k}

$$
\mathbf{e}_{r}=\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}}, \quad \mathbf{r}_{i}=\frac{\left\|\mathbf{r}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}}=\frac{\left\|\mathbf{b}_{i}-\mathbf{A} \mathbf{x}_{i}^{k}\right\|_{2}}{\|\mathbf{b}\|_{2}} \leq \epsilon
$$

where, using as stopping criterion $\epsilon=10^{-\eta}$

$$
\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k}\right\|_{2}}{\left\|\mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \mathbf{r}_{i}=\kappa_{2}(\mathbf{A}) \epsilon=\kappa_{2}(\mathbf{A}) \times 10^{-\eta}
$$

After one iteration of DCG we obtain

$$
\begin{gathered}
\mathbf{x}^{1}=\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}^{1(i)}, \text { and } \\
\frac{\left\|\mathbf{x}-\mathbf{x}^{1}\right\|_{2}}{\|\mathbf{x}\|_{2}}=\frac{\left\|\sum_{i=1}^{m} c_{i}\left(\mathbf{x}_{i}-\mathbf{x}_{i}^{1}\right)\right\|_{2}}{\left\|\sum_{i=1}^{m} c_{i} \mathbf{x}_{i}\right\|_{2}} \leq \kappa_{2}(\mathbf{A}) \times 10^{-\eta} \\
\text { Error DCG: } \mathbf{e}_{r}=\kappa_{2}(\mathbf{A}) \times 10^{-\eta}
\end{gathered}
$$

Table of Contents

(1) Problem Definition

(2) Linear Solvers
(3) Proposed deflation methodology
(4) Results
(5) Conclusions
(6) Bibliography

Numerical experiments

Single-phase flow (Recycling Deflation vectors).

System configuration					
Well pressures [bars]					
	$P 1$	$P 2$	$P 3$	$P 4$	l
	-275	-275	-275	-275	1100
Snapshots (4 linearly independent)					
	$P 1$	$P 2$	$P 3$	$P 4$	l
\mathbf{z}_{1}	0	-275	-275	-275	825
\mathbf{z}_{2}	-275	0	-275	-275	825
\mathbf{z}_{3}	-275	-275	0	-275	825
\mathbf{z}_{4}	-275	-275	-275	0	825

Table: Well configurations.

Figure: Pressure field.

Layers	ICCG	DICCG
1	251	1
35	536	1
85	1029	1

Table: Number of iterations, $t o l=10^{-7}$.

Numerical experiments

Single-phase flow (Recycling Deflation vectors).

Snapshots						
	$P 1$	$P 2$	$P 3$	$P 4$	I	
\mathbf{z}_{5}	-275	-275	-275	-275	1100	
\mathbf{z}_{6}	0	0	-275	-275	550	
\mathbf{z}_{7}	-275	0	0	-275	550	
\mathbf{z}_{8}	-275	-275	0	0	550	
\mathbf{z}_{9}	-275	0	-275	0	550	
\mathbf{z}_{10}	0	-275	0	-275	550	
\mathbf{z}_{11}	0	-275	-275	0	550	
\mathbf{z}_{12}	-275	0	0	0	275	
\mathbf{z}_{13}	0	-275	0	0	275	
\mathbf{z}_{14}	0	0	-275	0	275	
\mathbf{z}_{15}	0	0	0	-275	275	

Numerical experiments

Single-phase flow (Recycling Deflation vectors).

Snapshots						
	$P 1$	$P 2$	$P 3$	$P 4$	I	
\mathbf{z}_{5}	-275	-275	-275	-275	1100	
\mathbf{z}_{6}	0	0	-275	-275	550	
\mathbf{z}_{7}	-275	0	0	-275	550	
\mathbf{z}_{8}	-275	-275	0	0	550	
\mathbf{z}_{9}	-275	0	-275	0	550	
\mathbf{z}_{10}	0	-275	0	-275	550	
\mathbf{z}_{11}	0	-275	-275	0	550	
\mathbf{z}_{12}	-275	0	0	0	275	
\mathbf{z}_{13}	0	-275	0	0	275	
\mathbf{z}_{14}	0	0	-275	0	275	
\mathbf{z}_{15}	0	0	0	-275	275	

Numerical experiments

Single-phase flow (Recycling Deflation vectors).

Snapshots						
	$P 1$	$P 2$	$P 3$	$P 4$	I	
\mathbf{z}_{5}	-275	-275	-275	-275	1100	
\mathbf{z}_{6}	0	0	-275	-275	550	
\mathbf{z}_{7}	-275	0	0	-275	550	
\mathbf{z}_{8}	-275	-275	0	0	550	
\mathbf{z}_{9}	-275	0	-275	0	550	
\mathbf{z}_{10}	0	-275	0	-275	550	
\mathbf{z}_{11}	0	-275	-275	0	550	
\mathbf{z}_{12}	-275	0	0	0	275	
\mathbf{z}_{13}	0	-275	0	0	275	
\mathbf{z}_{14}	0	0	-275	0	275	
\mathbf{z}_{15}	0	0	0	-275	275	

Numerical experiments

Single-phase flow (Recycling Deflation vectors).

Snapshots						
	$P 1$	$P 2$	$P 3$	$P 4$	I	
\mathbf{z}_{5}	-275	-275	-275	-275	1100	
\mathbf{z}_{6}	0	0	-275	-275	550	
\mathbf{z}_{7}	-275	0	0	-275	550	
\mathbf{z}_{8}	-275	-275	0	0	550	
\mathbf{z}_{9}	-275	0	-275	0	550	
\mathbf{z}_{10}	0	-275	0	-275	550	
\mathbf{z}_{11}	0	-275	-275	0	550	
\mathbf{z}_{12}	-275	0	0	0	275	
\mathbf{z}_{13}	0	-275	0	0	275	
\mathbf{z}_{14}	0	0	-275	0	275	
\mathbf{z}_{15}	0	0	0	-275	275	

Numerical experiments

Two-phase flow, injection through left boundary (Moving window approach)

Figure: Water Saturation, 1 layer.

Figure: Eigenvalues of $\mathbf{C}=\frac{1}{m} \mathbf{X} \mathbf{X}^{\top}$.

Numerical experiments

Two-phase flow, injection through left boundary (Moving window approach)

Total ICCG Iterations	DICCG Method	ICCG Iterations (snapshots)	DICCG Iterations	Total ICCG + DICCG Iterations	\% of Total ICCG Iterations	
1						
42062	DICCG $_{10}$	2309	8153	10462	25	
42062	DICCG $_{30}$	6923	4035	10958	26	
35 layers						
66728	DICCG $_{10}$	2759	17190	19949	30	
66728	DICCG $_{30}$	8535	11798	20333	30	

Table: Number of iterations of the ICCC and DICCG methods.

Numerical experiments

Two-phase flow, injection through wells
(Training phase approach)

Figure: Water Saturation, 1 layer.

Figure: Eigenvalues of $\mathbf{C}=\frac{1}{m} \mathbf{X X}^{\top}$.

Numerical experiments

Two-phase flow, injection through wells
(Training phase approach)

1 layer			
Total ICCG	DICCG Method	Iter	\% ICCG Iter
$P_{\text {bhp }}=275$ [bars]			
32237	DICCG $_{30}$	5503	17
32237	DICCG $_{10}$	8811	27
P bhp $^{4}=200[\mathrm{bars}]$			
32237	DICCG $_{30}$	5794	18
32237	DICCG $_{10}$	9207	29
P $_{\text {bhp }}=400[$ bars]			
32237	DICCG $_{30}$	4818	15
32237	DICCG $_{10}$	8094	25

35 layers			
Total ICCG	DICCG Method	Iter	\% ICCG Iter
$P_{\text {bhp }}=275[\mathrm{bars}]$			
59806	DICCG $_{30}$	13093	22
59806	DICCG $_{10}$	22577	38
$P_{\text {bhp }}=200[$ bars $] ~$			
59806	DICCG $_{30}$	13256	22
59806	DICCG $_{10}$	23529	39
$P_{\text {bhp }}=400$ [bars]			
59806	DICCG $_{30}$	12959	22
59806	DICCG $_{10}$	21526	36

Table: number of iterations of the ICCC and DICCG methods.

Table of Contents

(1) Problem Definition

(2) Linear Solvers
(3) Proposed deflation methodology
(4) Results
(5) Conclusions
(7) Bibliography

Conclusions

- We presented a new acceleration approach for iterative methods: POD-based deflation method combining POD and deflation techniques.

Conclusions

- We presented a new acceleration approach for iterative methods: POD-based deflation method combining POD and deflation techniques.
- System information is collected with 3 methods:

1 Recycling deflation: 1 DICCG iterations.
2 Moving window: DICCG requires $25-30 \%$ ICCG iterations.
3 Training phase: DICCG requires $15-40 \%$ ICCG iterations.

Conclusions

- We presented a new acceleration approach for iterative methods: POD-based deflation method combining POD and deflation techniques.
- System information is collected with 3 methods:

1 Recycling deflation: 1 DICCG iterations.
2 Moving window: DICCG requires $25-30 \%$ ICCG iterations.
3 Training phase: DICCG requires $15-40 \%$ ICCG iterations.

- For (1), the results do not depend on the size.

Conclusions

- We presented a new acceleration approach for iterative methods: POD-based deflation method combining POD and deflation techniques.
- System information is collected with 3 methods:

1 Recycling deflation: 1 DICCG iterations.
2 Moving window: DICCG requires $25-30 \%$ ICCG iterations.
3 Training phase: DICCG requires $15-40 \%$ ICCG iterations.

- For (1), the results do not depend on the size.
- For $(2,3)$, we observe an small increment on the iterations when using 35 layers.

Conclusions

- We presented a new acceleration approach for iterative methods: POD-based deflation method combining POD and deflation techniques.
- System information is collected with 3 methods:

1 Recycling deflation: 1 DICCG iterations.
2 Moving window: DICCG requires $25-30 \%$ ICCG iterations.
3 Training phase: DICCG requires $15-40 \%$ ICCG iterations.

- For (1), the results do not depend on the size.
- For $(2,3)$, we observe an small increment on the iterations when using 35 layers.
- We tested these methodologies for reservoir simulation examples. However, they are not exclusively applicable to these problems, but to any transient problem and other linear solvers.

Table of Contents

(1) Problem Definition

(2) Linear Solvers
(3) Proposed deflation methodology
(4) Results
(5) Conclusions
(6) Bibliography

References

J.D. Jansen

A systems description of flow through porous media.
Springer, 2013
K.A. Lie.

An Introduction to Reservoir Simulation Using MATLAB: User guide for the Matlab Reservoir Simulation Toolbox (MRST).
SINTEF ICT, 2013.
Y. Saad.

Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics Philadelphia, PA, USA. SIAM, 2nd edition, 2003.
J. Tang.

Two-Level Preconditioned Conjugate Gradient Methods with Applications to Bubbly Flow Problems.
PhD thesis, Delft University of Technology, 2008.
M. Clemens, M. Wilke, R. Schuhmann and T. Weiland.

Subspace projection extrapolation scheme for transient field simulations.
IEEE Transactions on Magnetics, 40(2):934-937, 2004.
J.M. Tang, R. Nabben, C. Vuik and Y. Erlangga.

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
Journal of scientific computing, 39(3):340-370, 2009.
C. Vuik, A. Segal and J.A. Meijerink.

An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients.
Journal of Computational Physics, 152:385, 1999.

References II

```
D. Pasetto, M. Ferronato and M. Putti.
A reduced order model-based preconditioner for the efficient solution of transient diffusion equations.
International Journal for Numerical Methods in Engineering, 109(8):1159-1179, 2017.
R. Markovinović.
System-Theoretical Model Reduction for Reservoir Simulation and Optimization.
PhD thesis, Delft University of Technology, 2009.
P. Astrid, G. Papaioannou, J.C. Vink and J.D. Jansen.
Pressure Preconditioning Using Proper Orthogonal Decomposition.
In 2011 SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, pages 21-23, 2011.
G.B. Diaz Cortes, C. Vuik and J.D. Jansen.
On POD-based Deflation Vectors for DPCG applied to porous media problems.
Journal of Computational and Applied Mathematics, 330(Supplement C):193-213, 2018.
```

