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problem from the work floor: material analysis

Figure: EU project, SKIDSAFE: asphalt-tire interaction
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problem from the work floor: material analysis

20th century science

consider materials to be homogeneous
21th century science

shift from MACRO to MESO/MICRO scale

• Obtain CT scan from material specimen

• Convert CT scan to mesh

• Use finite element method for discretization of governing
equations
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problem from the work floor: material analysis

Figure: CT scan of asphalt column
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problem from the work floor: material analysis

Figure: from CT scan to mesh, approx. 3 mln DOF
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problem from the work floor: material analysis

governing equations

K∆u = ∆f (1)

Stiffness matrix K , change in displacement ∆u and change of force
∆f . The change of force involves evaluation of non-linear
equations that depend on displacement field.
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problem from the work floor: material analysis

properties of stiffness matrix K

• symmetric, positive definite: ∀∆u 6= 0, ∆uTK∆u > 0

• K ∈ Rn×n, n >> 106

• discontinuities in values matrix entries ∼ O
(
106

)
:

ill-conditioned
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Existing solvers

just some possible methods and pre conditioners

• preconditioned conjugate gradient method (PCG) combined
with,

• BIM: Jacobi, SSOR
• Decomposition methods: (Additive-Schwarz) ILU(ε)

• direct solvers: MUMPS, PARDISO, SuperLU
• multigrid: geometric multigrid, algebraic multigrid (smoothed

aggregation)
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Existing solvers

bottom line: no free lunch
no black box solution for large, ill-conditioned systems

• performance of PCG depends on spectrum of K , large jumps
induce small eigenvalues, hence performance degrades when
number of jumps (different materials) increases

• direct solvers (may) become expensive for large meshes
• AMG can be insensitive to jumps, however to achieve this one

has to define the coarse grid specifically
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Use deflation

Deflation basedoperator is not a classical pre conditioner, i.e. it is
not an approximation of K . The deflation operator is a projection
which, by the right choice of the projection vectors, removes
eigenvalues from the spectrum of the projected system.

definition
split displacement vector u,

u =
(
I − PT

)
u + PTu, (2)

and let us define the projection P by,

P = I − KZ (ZTKZ )−1ZT , Z ∈ Rn×m (3)
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the DPCG method

We use deflation based operator in conjunction with pre
conditioning (e.g. diagonal scaling) to remove those small
eigenvalues that correspond to the jumps (discontinuities) in the
values of the stiffness matrix.

Deflated Pre conditioned Conjugate Gradient (DPCG) method

Solve for M−1PK∆u = M−1P∆f
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How to choose the deflation vectors?

• We have observed in [2]1 that the rigid body modes of the
regions corresponding to the different materials coincide with
the eigenvectors of the ’jump’ eigenvalues.

• By removing those rigid body modes (RBM) using deflation,
we remove the corresponding ’jump’ eigenvalues from the
system.

• The rigid body modes of sets of finite elements can be easily
computed.

1Jonsthovel et al., CMES, 2009
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How do RBM relate to stiffness matrix K?

The kernel of the element matrix of an arbitrary unconstrained
finite element is spanned by the rigid body modes of the element.
In 3D six rigid body modes: three translations, three rotations.
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How do RBM relate to stiffness matrix K?

Theorem
We assume a splitting K = C + R such that C and R are
symmetric positive semi-definite with N (C ) = span{Z} the null
space of C [1]2. Then

λi (C ) ≤ λi (PK ) ≤ λi (C ) + λmax(PR). (4)

Moreover, the effective condition number of PK is bounded by,

κeff(PK ) ≤ λn(K )

λm+1(C )
. (5)

2Vuik, Frank, SIAM, 2001
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation: construction of C
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How do RBM relate to stiffness matrix K?
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Recursive deflation

However, the definition of P given by first theorem does not
provide insight in the effect of individual deflation vectors on the
spectrum of PK . Introduce a recursive deflation operator which
can be used for more extensive eigenvalue analysis of PK .

Definition
P(k) = I − KZk(ZT

k KZk)−1ZT
k with Zk = [Z̃1, Z̃2, ..., Z̃k ], where

Z̃j ∈ Rn×lj and has rank lj .
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Recursive deflation

Theorem
Let P(k) and Zk as in Definition 2, then P(k)K = PkPk−1 · · ·P1K
where Pi+1 = I − K̃i Z̃i+1(Z̃

T
i+1K̃i Z̃i+1)

−1Z̃T
i+1, K̃i = Pi K̃i−1,

K̃1 = P1K, K̃0 = K, Z̃T
i K̃i−1Z̃

T
i and ZT

i KZi are non-singular
because Zi are of full rank and K is a symmetric positive definite
matrix.
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Recursive deflation

Proof.
by induction,

i. show P1K = P(1)K where Z1 = Z̃1 ∈ Rn×l1 ,
ii. assume Pi−1K̃i−2 = K̃i−1 = P(i−1)K where

Zi−1 = [Z̃i−1, Z̃i−2, · · · , Z̃1], show that Pi K̃i−1 = P(i)K where
Zi = [Z̃i ,Zi−1], Zi−1 ∈ Rn×l(i−1), Z̃i ∈ Rn×li and l =

∑i
r=i li .
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Recursive deflation: 1D example

Poisson equation,

− d

dx

(
c(x)

du(x)

dx

)
= f (x), x ∈ [0, l ]

u(0) = 0,
du

dx
(l) = 0
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Recursive deflation: 1D example

Introduce a FE mesh for the line [0, l ] including 3 domains
Ω1 = {x1, .., x4}, Ω2 = {x5, .., x8} and Ω3 = {x9, .., x13}.
For sake of simplicity we will write ci = c(xi ) where i = 1, ..., 13,
x1 = h and x13 = l . Furthermore because ci is constant on each
material domain we will use ci = c1, ci = c2 and ci = c3 on Ω1, Ω2

and Ω3 respectively.
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Recursive deflation: 1D example

After discretization,

K =
1

h
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Recursive deflation: 1D example
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Figure: sparsity pattern C0, C1 and C2. Nonzero elements represented by
symbols; corresponding to deflated material, interface elements and
remaining elements pictured by bold crosses, circles and non bold crosses
respectively.
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Recursive deflation: 1D example
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Figure: spectrum of M−1Ci (? correct, +++ wrong choice deflation vectors)
compared to spectrum of M−1K (+)
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Numerical experiment: real asphalt core

Consider picture from introduction. Size of system approx. 3
million DOF, material parameters given in table below,

Table:

(a) E modulus materials

aggregate bitumen air voids

70000 5000 100
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Numerical experiment: real asphalt core

We compare PCG and DPCG combined with three different
preconditioners,

• diagonal scaling: low cost, weak properties
• AMG smoothed aggregation, default parameters, no specific

information on mesh provided: relative low set up and solve
cost, designed for solving elastic equations

• AMG smoothed aggregation, approx. null space of operator
and dof-to-node mapping provided: expensive set up and solve
cost, high memory usage
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Numerical experiment: real asphalt core

4 CPUs 8 CPUs 64 CPUs iterations
PCG - diag nc nc nc nc
DPCG - diag 9883 5456 680 9018
PCG - SA 6687 6906 1123 2018
DPCG - SA 9450 5043 771 1210
PCG - SA+ oom 2200 oom 407
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Numerical experiment: real asphalt core
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Figure: numerical results: residuals
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Numerical experiment: real asphalt core
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Figure: numerical results: Ritz values derived from (D)PCG
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