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C. Vuik, T.B. Jönsthövel, M.B. van Gijzen

Delft University of Technology

IV European Congress on Computational Mechanics:
Solids, Structures and Coupled Problems in Engineering 16-21

May 2010



Outline Introduction Iterative methods Conclusions and references

Introduction
what is the use of another Krylov preconditioner?
problem from the work floor: material analysis

Iterative methods
what is in store already?
why and what is deflation?

Conclusions and references



Outline Introduction Iterative methods Conclusions and references

what is the use of another Krylov preconditioner?

i. we have to deliver to the end-user: the engineer, solving real
life problems.

ii. direct methods are not well suited for large problems

iii. iterative (Krylov) methods only perform well when combined
with a correct preconditioner
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what is the use of another Krylov preconditioner?

the catch
any physical problem demands a tailored preconditioner
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problem from the work floor: material analysis

Figure: EU project, SKIDSAFE: asphalt-tire interaction



Outline Introduction Iterative methods Conclusions and references

problem from the work floor: material analysis

20th century science

consider materials to be homogeneous
21th century science

shift from MACRO to MESO/MICRO scale

• Obtain CT scan from material specimen

• Convert CT scan to mesh

• Use finite element method for discretization of governing
equations
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problem from the work floor: material analysis

Figure: CT scan of asphalt column
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problem from the work floor: material analysis

Figure: from CT scan to mesh
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problem from the work floor: material analysis

governing equations

K∆u = ∆f (1)

Stiffness matrix K , change in displacement ∆u and change of force
∆f . The change of force involves evaluation of non-linear
equations that depend on displacement field.
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problem from the work floor: material analysis

properties of stiffness matrix K

• symmetric, positive definite: ∀∆u 6= 0, ∆uTK∆u > 0

• K ∈ Rn×n, n >> 106

• discontinuities in values matrix entries ∼ O
(
106

)
:

ill-conditioned
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what is in store already?

just some possible methods and preconditioners

• preconditioned conjugate gradient method (PCG) combined
with,

• BIM: Jacobi, SSOR
• Incomplete decomposition methods: ILU(ε)

• geometric multigrid, algebraic multigrid (AMG)
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what is in store already?

bottom line: no free lunch
no black box solution for large, ill-conditioned systems

• performance of PCG depends on spectrum of K , large jumps
induce small eigenvalues, hence performance degrades when
number of jumps (different materials) increases

• AMG can be insensitive to jumps, however to achieve this one has
to define the coarse grid specifically
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why and what is deflation?

Deflation based operator is not a classical preconditioner, i.e. it is
not an approximation of K . The deflation operator is a projection
which, by the right choice of the projection vectors, removes
eigenvalues from the spectrum of the projected system.

definition
split displacement vector u,

u =
(
I − PT

)
u + PTu, (2)

and let us define the projection P by,

P = I − KZ (ZTKZ )−1ZT , Z ∈ Rn×m (3)
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the DPCG method

We use the deflation based operator in conjunction with
preconditioning (e.g. diagonal scaling) to remove those small
eigenvalues that correspond to the jumps (discontinuities) in the
values of the stiffness matrix.

Deflated Pre conditioned Conjugate Gradient (DPCG) method

Solve for M−1PK∆u = M−1P∆f
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How to choose the deflation vectors?

• We have observed in [2]1 that the rigid body modes of the regions
corresponding to the different materials coincide with the
eigenvectors of the ’jump’ eigenvalues.

• By removing those rigid body modes (RBM) using deflation, we
remove the corresponding ’jump’ eigenvalues from the system.

• The rigid body modes of sets of finite elements can be easily
computed.

1Jonsthovel et al., CMES, 2009
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How do RBM relate to stiffness matrix K?

The null space of the element matrix of an arbitrary unconstrained
finite element is spanned by the rigid body modes of the element.
In 3D six rigid body modes: three translations, three rotations.
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How do RBM relate to stiffness matrix K?

Consider 4 noded finite element in 3D, displacement given by:

{ x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 }T (4)
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How do RBM relate to stiffness matrix K?

Translations

{ 1 0 0 1 0 0 1 0 0 1 0 0 }T

{ 0 1 0 0 1 0 0 1 0 0 1 0 }T

{ 0 0 1 0 0 1 0 0 1 0 0 1 }T
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How do RBM relate to stiffness matrix K?

Rotations: x-y plane

θj = tan−1
(

yj

xj

)
φj = cos−1

(
zj

rj

)


−r1 sin(θ1) sin(φ1)
r1 cos(θ1) sin(φ1)

0
−r2 sin(θ2) sin(φ2)
r2 cos(θ2) sin(φ2)

0
−r3 sin(θ3) sin(φ3)
r3 cos(θ3) sin(φ3)

0
−r4 sin(θ4) sin(φ4)
r4 cos(θ4) sin(φ4)

0


,
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How do RBM relate to stiffness matrix K?

Theorem
We assume a splitting K = C + R such that C and R are
symmetric positive semi-definite with N (C ) = span{Z} the null
space of C [1]2. Then

λi (C ) ≤ λi (PK ) ≤ λi (C ) + λmax(PR) for all i . (5)

Moreover, the effective condition number of PK is bounded by,

κeff(PK ) ≤ λn(K )

λm+1(C )
. (6)

2Vuik, Frank, SIAM, 2001
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation: construction of C
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation: construction of R
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Does DPCG work?

The performance of the DPCG method depends on the choice of
the regions, hence the choice of deflation vectors. In [2]3 we
describe several deflation strategies. Choosing nested regions works
best. The method is robust for any choice of material stiffness.

3Jonsthovel et al., CMES, 2009
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Does DPCG work: numerical experiment

Consider picture from introduction. We have run several variations
in material stiffness, hence the size of the jumps.

Table:

(a) E modulus materials

aggregate bitumen air voids

standard 70000 5000 100
(a) 700000 5000 100
(b) 70000 50000 100
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Does DPCG work: numerical experiment

Two deflation strategies,

• DPCG I, Nested regions

• DPCG II, Independent regions, no overlap
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Does DPCG work: numerical experiment

Table: CPU wall clock time(s) PCG and DPCG (parallel implementation,
MPI, 8 CPUs Intel Xeon E5450 running at 3.00GHz), ∼ 100.000 DOF

PCG DPCG I DPCG II
iter cpu (s) iter cpu(s) iter cpu(s)

std 5195 30 1107 9 1469 10
(a) 8670 50 1077 8 1864 11
(b) 5201 28 1414 10 2046 13
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Does DPCG work?
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Conclusions and references

• Deflated Preconditioned CG is a fast and robust method

• For problems with interfaces (jumps in properties) the physics
should be taken into account

• Rigid Body Modes are suitable as deflation vectors and cheap to
construct

• Nested regions strategy is better than the independent region
strategy
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