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The incompressible Navier Stokes equation

−ν∇2
u + u.∇u + ∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity
p is the pressure field
ν > 0 is the kinematic viscosity coefficient ( 1/Re).
Ω ⊂ R

2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .



4

Numerical analysis group, DIAM

Matrix form after linearization
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where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = A in Stokes problem, A is vector Laplacian matrix

• F = νA + N in Picard linearization, N is vector-convection matrix

• F = νA + N + W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

Sparse linear system, Symmetric(Stokes problem), nonsymmetric otherwise.
Saddle point problem having large number of zeros on the main diagonal
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Preconditioners

ILU preconditioner
A = LD−1U + R,
(LD−1U)i,j = ai,j for (i, j) ∈ S,
where R consist of dropped entries that are absent in the index set S(i, j). [Meijerink
and van der Vorst, 1977]
- dropping based on position, S = {(i, j)| aij 6= 0} (positional dropping)
- dropping based on numerical size (Threshold dropping)

Simple to implement
Computation is inexpensive
Inaccuracies and instabilities
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Efficient ILU preconditioner

• Pivoting

• A priori reordering/renumbering

Well-known renumbering schemes
• Cuthill McKee renumbering (CMK) [Cuthill McKee - 1969]

• Sloan renumbering [Sloan - 1986]

• Minimum degree renumbering (MD) [Tinney and Walker - 1967]

[Dutto-1993, Benzi-1997, Duff and Meurant-1989, Wille-2004, Chow and Saad - 1997]
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ILUPACK

Developed by Matthias Bollhöfer and his team. Gives robust and stable
ILU preconditioner

• Static reordering [RCM, AMD etc]

• Scaling, pivoting

• Inverse triangular factors are kept bounded.

• The above steps are performed recursively

• Krylov method is applied to solve the preconditioned system

Matthias Bollhöfer, Yousef Saad. Multilevel Preconditioners Constructed From

Inverse-Based ILUs, SIAM Journal on Scientific Computing, 27 , 5(2005), 1627-1650
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New reordering scheme

• Renumbering of grid points: Grid points are renumbered with
Sloan or Cuthill McKee algorithms

• Reordering of unknowns
• p-last per node reordering , The velocity unknowns are ordered followed by

pressure unknowns per node (Optimal profile but breakdown of ILU may
occur)

• p-last reordering , first all the velocity unknowns are ordered followed by
pressure unknowns. Usually it produces a large profile but avoids breakdown
of LU decomposition.

• p-last per level reordering : The grid is divided into levels. Each level
consists of a connected set of nodes. Thereafter, the unknowns are ordered
per level. At each level, first velocity unknowns are placed and then followed
by the pressure unknowns.
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Block preconditioners

Block triangular preconditioner
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5 , S = −BF−1BT (Schur complement matrix)

Subsystem solve Sz2 = r2, F z1 = r1 − BT z2
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Block preconditioners

Well-known approximations to Schur complement

• Pressure convection diffusion (PCD) [Kay, Login and Wathen, 2002]
S ≈ −ApF

−1

p Qp

• Least squares commutator (LSC) [Elman, Howle, Shadid, Silvester and
Tuminaro, 2002]
S ≈ −(BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

• Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006]
• Convergence independent of the mesh size (sometime) and mildly dependent

on Reynolds number
• Require iterative solvers (Multigrid) for the (1,1) and (2,2) blocks
• Require extra operators
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Block preconditioners

SIMPLE preconditioner [Vuik 2000]
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with approximation F−1 = D−1 = diag(F )−1 in (2,2) and (1,2) in L and U block
matrices.
Algorithm form:

1. Solve Fu∗ = ru − BT p∗.

2. Solve Ŝδp = rp − Bu∗.

3. update u = u∗ − D−1BT δp.

4. update p = p∗ + δp.
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SIMPLE type preconditioner
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Lemma: In the SIMPLER preconditioner/algorithm, both variants (one or two velocity
solves) are identical.
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SIMPLE type preconditioner

With Lemma and assuming uk and pk equal zero, the steps in SIMPLER reduce to
SIMPLER preconditioner:

1. Solve Ŝp∗ = ru − BD−1rp

2. Solve Fu∗ = ru − BT p∗.

3. Solve Ŝδp = rp − Bu∗.

4. update u = u∗ − D−1BT δp.

5. update p = p∗ + δp. ,

- Two Poisson solve
- One velocity solve
- Gives faster convergence than SIMPLE
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SIMPLE type preconditioner

MSIMPLER preconditioner

In SIMPLER, by making following changes leads to MSIMPLER preconditioner.
LSC: Ŝ ≈ −(BQ̂−1

u BT )(BQ̂−1
u FQ̂−1

u
| {z }

BT )−1(BQ̂−1
u BT )

assuming FQ̂−1
u ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂−1
u BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with
Q̂−1

u .
Properties:

• Convergence better than other variants of SIMPLE

• Cheaper than SIMPLER ( in construction) and LSC ( per iteration)



15

Numerical analysis group, DIAM

Numerical Experiments

• Driven Cavity flow (2D)

• Backward facing flow (2D and 3D)

• Q2-Q1 finite element discretization [Taylor, Hood - 1973]

• Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]

• GCR(20), Bi-CGSTAB, GMRES

• The iteration is stopped if the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol,
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Numerical experiments(ILU preconditioners)

Profile and bandwidth reduction in the backward facing step w ith Q2-Q1
discretization

Grid Profile reduction Bandwidth reduction

- Sloan Cuthill-McKee Sloan Cuthill-McKee

4 × 12 0.37 0.61 0.18 0.17

8 × 24 0.28 0.54 0.13 0.08

16 × 48 0.26 0.5 0.11 0.04

32 × 96 0.25 0.48 0.06 0.02
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Numerical experiments (SILU preconditioner)

Stokes Problem in a square domain with Bi-CGSTAB ,
accuracy = 10−6, Sloan renumbering

Q2 − Q1 Q2 − P1

Grid size p-last p-last per level p-last p-last per level

16 × 16 36(0.11) 25(0.09) 44(0.14) 34(0.13)

32 × 32 90(0.92) 59(0.66) 117(1.08) 75(0.80)

64 × 64 255(11.9) 135(6.7) 265(14) 165(9.0)

128 × 128 472(96) 249(52) 597(127) 407(86)
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Numerical experiments (SILU preconditioner)

Effect of grid increase(Left) and Reynolds number(Right) o n inner
iterations for the Navier Stokes backward facing step probl em
with accuracy = 10−2 using the p-last-level reordering

8x24 16x48 32x96 64x192
10

1

10
2

10
3

10
4

Grid size

N
o

. 
o

f 
a

c
c
u

m
u

la
te

d
 i
n

n
e

r 
it
e

ra
ti
o

n
s

Bi−CGSTAB, Re =100
Bi−CGSTAB, Re=10
GMRESR, Re = 100
GMRESR, Re = 10

50 100 150 200 250 300 350 400
10

1

10
2

10
3

A
v
e

ra
g

e
 i
n

n
e

r 
it
e

ra
ti
o

n
s

32x96 Q2−Q1
32x96 Q2−P1

Reynolds number 



19

Numerical analysis group, DIAM

Numerical experiments (ILU preconditioners)

Comparison with ILUPACK-Stokes Problem in a backward facin g
domain with an accuracy = 10−6, Q2-Q1 elements
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Numerical Experiments (SIMPLE type preconditioners)

Stokes backward facing step, GCR(20) with accuracy of 10−4, PCG used as an
inner solver (SEPRAN)

SIMPLE SIMPLER MSIMPLER

Grid size out-it, t(s) in-it-u
in-it-p out-it, t(s) in-it-u

in-it-p out-it, t(s) in-it-u
in-it-p

16 × 48 49, 0.8 145

765
28, 0.58 224

849
9, 0.15 22

260

32 × 96 89, 8.9 418

2585
66, 20 2680

2654
10, 0.97 32

568

64 × 192 193, 148 1940

10067
NC - 14, 8.4 90

1433
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Numerical Experiments (SIMPLE type preconditioners)

The Navier-Stokes problem solved in Q2-Q1 discretized 16 × 48 backward facing

step with varying Reynolds number, Number of accumulated in ner iterations(Left),

CPU time in seconds (Right)-(SEPRAN)
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Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with
preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1
hexahedrons

Grid SIMPLE LSC MSIMPLER SILU (Bi-CGSTAB)

iter. (ts) in-it-u
in-it-p iter. (ts)

8 × 8 × 16 44(4) 97

342
16(1.9) 41

216
14(1.4) 28

168
26(0.7)

16 × 16 × 32 84(107) 315

1982
29(51) 161

1263
17(21) 52

766
65(16.7)

24 × 24 × 48 99(447) 339

3392
26(233) 193

2297
17(77) 46

1116
117(118)

32 × 32 × 40 132(972) 574

5559
37(379) 233

2887
20(143) 66

1604
189(235)
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Numerical Experiments (overall comparison)

3D Backward facing step: Preconditioners used in solving th e Navier-Stokes
problem with preconditioned GCR(20) with accuracy of 10−2 (SEPRAN) using
Q2-Q1 hexahedrons

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 32

100 173(462) 96(162) 321(114)

200 256(565) 145(223) 461(173)

400 399(745) 235(312) 768(267)

32 × 32 × 40

100 240(5490) 130(1637) 1039(1516)

200 NC 193(2251) 1378(2000)

400 675(11000) 295(2800) 1680(2450)
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Numerical Experiments (overall comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-St okes problem is solved
with accuracy 10−4, a linear system at each Picard step is solved with accuracy
10−2 using preconditioned Krylov subspace methods. Bi-CGSTAB i s used as
inner solver in block preconditioners(SEPRAN)

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32 × 32 × 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)
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Conclusions

• Two new preconditioners from ILU family and block type presented that competes
with the preconditioners published recently.

• In ILU, A new scheme for the renumbering of grid points and reordering of
unknowns is introduced that prevents the break down of the ILU preconditioner
and leads to faster convergence of Krylov subspace methods.

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In contrast with SIMPLER, MSIMPLER is not sensitive to the accuracies that are
used for the inner solvers.

• In all our experiments MSIMPLER proved to be cheaper than LSC. This concerns
both the number of outer iterations, inner iterations and CPU time.

• The number of outer iterations in MSIMPLER hardly increases if a direct solver for
the subsystems is replaced by an iterative solver. This is in contrast with LSC
where large differences are observed.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when
the problem is solved with high accuracy.
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Thank you for your attention !
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