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Introduction

Bubbly flow

@ Simulation of flows with bubbles and droplets

9 Flow governed by the Navier-Stokes equations with
unknowns p an d u:

0 1 1
—u-i-u-Vu—i-pr:fv-u(Vu—i-VuT)—i—g
ot p p

V.-u=0

@ Solution using operator-splitting methods
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Introduction

Problem Setting

Most Time-Consuming Part in Operator-Splitting Methods

Solve the linear system
Ax=b, AeRM™"

where A is large, sparse, SPSD, ill-conditioned and is originating from the pressure
equation

| A\
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Origin of Linear System
Poisson equation with discontinuous density p:

div (}Vp) =f
P

with Neumann boundary conditions
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Introduction

Traditional Krylov Solvers

ate Gradients Method (PCG)?*

Solve iteratively:
M~Ax =M~1b

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

9 Mz =y is relatively easy to solve
@ M—1A has a smaller condition number than A

v
Theorem 2

Exact error of PCG after iteration j:

VEM-IA) -1 J
11X = xil1a < 2/|x — xola [ VEMA) Z1
VEM=IA) +1

IM.R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49, pp.

409-436, 1952.
2D.G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, 1973.
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Introduction

Traditional Krylov Solvers

Problem of PCG

The spectrum of M—1A contains a number of small eigenvalues

Consequence

R (M—lA) is large — Slow convergence of the iterative process

Can the convergence of PCG be improved by eliminating those small eigenvalues in
some way?
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Second level preconditioners
[ Jele]e]

Second level preconditioners

Second level preconditioners

Various choices are possible

9 Projection vectors
Physical vectors, eigenvectors, domain decomposition vectors (constant, linear, ...)

9 Projection method
Deflation, coarse grid projection, balancing, augmented, FETI

@ Implementation
sparseness, with(out) using projection properties, optimized, stability, rounding
errors, ...
v
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Second level preconditioners

Deflated Krylov

Krylov Ar 1950
Preconditioned Krylov M—1Ar 1980 é
£
B
r <
Block Preconditioned Krylov Z(Mi_l)Ar 1990 2
i=1 g
r 2
Block Preconditioned Deflated Krylov Z(Mifl)PAr 2000 3
i=1 =
43
a
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Second level preconditioners

Deflated ICCG

Preliminaries

A is SPD, Conjugate Gradients
P=1-AZE~1ZT withE =2TAZ

and Z = [z;...z¢], where z4, ..., z; are independent deflation vectors.
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Properties

Q P'Z=0and PAZ =0
Q P2=P

Q APT =PA
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Second level preconditioners

Deflated ICCG

x=(1—-PT)x +PTx

(1—PT)x =ZE~1ZTAx = ZE~1ZTb, APTx = PAXx = Pb
o

k:O, f’\OZPro, pl—zl_l- TL- 1r0,

while [|fc||2 > € do
k =k +1;
_ (k—12k—1).
A= (py,PARK)
X = Xk—1 + akPk;
rk =f_1 — axPAp;

=L TL 1I'k,
(oz) .
’Bk = (k—1.2k—1)’
Pk+1 = Zk + BkPk;
end while )
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Choice of vectors
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Choice of vectors

Choice of vectors

Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of M—1A

Problem Ideal Choice of Z
These eigenvectors are too expensive to compute in practice and are not sparse

Alternative Choice of Z

Find projection vectors such that they
@ approximate these eigenvectors
9 are sparse
9@ are easy to parallelize
First step: Analyze small eigenvalues and corresponding eigenvectors
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Choice of vectors

Analysis of Eigenvalues and Eigenvectors

Properties of Spectrum of M—1A

Spectrum contains two classes of small eigenvalues:
@ O(10—3)-eigenvalues corresponding with bubbles
@ Small O(1)-eigenvalues

One should get rid of these eigenvalues
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Choice of vectors

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with ©O(10~2)-eigenvalues

@ constant in bubbles
@ linear elsewhere

v
Approximations

The vectors remain good approximations of the eigenvectors if
9 the linear parts are perturbed arbitrarily
9@ the constant part are perturbed by a constant

v
Consequence

Level set projection vectors can approximate these eigenvectors

Note: the level set function is used as an indication function of the bubbles

N,
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Level set vectors

Level set vectors

Level set vectors
@000

Projection subspace matrix

Z:[zlz2

(7)i = {

0,
1,

z;] consists of
X € Q \ Qj
Xj € Qj

I3
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Level set vectors
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Level set vectors

Subdomain Projection

Projection subspace matrix

Z =[z1 2z, --- zr] consists of

N 0, XiEQ\Qj
(Z])'_{ 1, XiEQj
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Level set vectors

Properties of Projection Vectors

Level set Projection Vectors

@ Projection of O(10~3)-eigenvalues to zero
9 Very sparse structure

9 Only a few vectors required

9 Change at each time step

y

Subdomain Projection Vectors

@ Projection of O(1)-eigenvalues to zero
@ Sparse structure

@ Reasonable number of vectors required
@ The same for all time steps
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Level set vectors
[e]e]e] )

Level set vectors

Further Analysis

Combination of Level set and Subdomain Projection

Both approaches can be combined leading to level set-subdomain projection:

ONNO

@, .
v
Properties of Level set-Subdomain Projection Vectors

@ Projection of both ©(10—3)- and O(1)-eigenvalues to zero
@ Sparse structure

@ Many level set-subdomain projection vectors are required
@ Change at each time step
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Numerical experiments

Numerical experiments
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Problem with 5 bubbles, contrast 10~° and varying grid size

n =162 n =322 n = 642
Deflation Method | k #1t. CPU | #1t. CPU | #It. CPU
ICCG - 39 0.04 | 82 0.53 | 159 10.92
S-DICCG—k 3 37 0.12 | 80 0.67 | 194 14.01
15 | 36 0.07 | 97 0.80 | 193 13.82
63 | 19 0.11 | 16 0.20 | 26 2.14
L-DICCG—k 4 17 0.09 37 0.37 75 6.17
LS-DICCG—k 11 | 14 0.07 | 30 0.29 | 54 4.08
35 | 10 0.08 | 21 0.32 | 40 3.05
83 | — - 15 0.20 | 25 2.05

I3
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Numerical experiments

Numerical experiments
oeo

Problem with 5 bubbles, n = 642 and varying contrast

e=10"3 e=10"°

Deflation Method | k #I1t. CPU | #1t. CPU
ICCG - 118 8.12 | 159 10.92
S-DICCG—k 3 134 9.79 | 194 14.01
15 | 131 9.60 | 193 13.82

63 | 26 231 | 26 2.14

L-DICCG—k 4 74 5.98 75 6.17
LS-DICCG—k 11 | 54 4.05 54 4.08
35 | 40 3.08 | 40 3.05

83 | 25 246 | 25 2.41

I3
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Numerical experiments
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Numerical experiments

Problem with a varying number of bubbles, n = 642 and contrast 10~

Number of bubbles 1 2 5

Deflation Method k [#Itt CPU |[k [#Itt CPU |[k [#It CPU
ICCG - 89 6.13 - 104 7.20 - 159 10.92
S-DICCG—k 3 96 7.39 3 69 5.13 3 194 14.01

15 | 52 3.97 15 | 64 4.79 15 | 193 13.82
63 | 26 2.14 63 | 27 2.16 63 | 26 2.14
L-DICCG—k 0 - - 1 79 5.79 4 75 6.17
LS-DICCG—k 7 67 5.30 6 65 5.11 11 | 54 4.08
19 | 41 3.14 24 | 42 3.22 35 | 40 3.05
67 | 26 2.50 72 | 26 211 83 | 25 2.05
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Conclusions

Conclusions

@ Deflation helps!
@ Choice of deflation vectors is important
9 Subdomain vectors give good results if the number of vectors is large enough

9 Level set and Level set Subdomain vectors lead to convergence which is
independent of the contrast

@ Level set Subdomain vectors remove both O(10~2) and O(1) eigenvalues
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Conclusions

Further information

For papers on deflation see:

http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
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