On the choice of abstract projection vectors for second level preconditioners

C. Vuik ${ }^{1}$, J.M. Tang ${ }^{1}$, and R. Nabben ${ }^{2}$
${ }^{1}$ Delft University of Technology
Delft Institute of Applied Mathematics
${ }^{2}$ Technische Universität Berlin
Institut für Mathematik

Outline

Introduction2 Second level preconditioners

3 Choice of vectors

4 Level set vectors
(5) Numerical experiments

6 Conclusions

Bubbly flow

Background

- Simulation of flows with bubbles and droplets
- Flow governed by the Navier-Stokes equations with unknowns p an $d u$:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+u \cdot \nabla u+\frac{1}{\rho} \nabla p=\frac{1}{\rho} \nabla \cdot \mu\left(\nabla u+\nabla u^{T}\right)+g \\
\nabla \cdot u=0
\end{array}\right.
$$

- Solution using operator-splitting methods

Problem Setting

Most Time-Consuming Part in Operator-Splitting Methods

Solve the linear system

$$
A x=b, \quad A \in \mathbb{R}^{n \times n}
$$

where A is large, sparse, SPSD, ill-conditioned and is originating from the pressure equation

Origin of Linear System

Poisson equation with discontinuous density ρ :

$$
\operatorname{div}\left(\frac{1}{\rho} \nabla p\right)=f
$$

with Neumann boundary conditions

Traditional Krylov Solvers

Preconditioned Conjugate Gradients Method (PCG) ${ }^{1}$

Solve iteratively:

$$
M^{-1} A x=M^{-1} b
$$

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

- $M z=y$ is relatively easy to solve
- $M^{-1} A$ has a smaller condition number than A

Theorem ${ }^{2}$

Exact error of PCG after iteration j :

$$
\left\|x-x_{j}\right\|_{A} \leq 2\left\|x-x_{0}\right\|_{A}\left(\frac{\sqrt{\tilde{\kappa}\left(M^{-1} A\right)-1}}{\sqrt{\tilde{\kappa}\left(M^{-1} A\right)+1}}\right)^{j}
$$

[^0]
Traditional Krylov Solvers

Problem of PCG

The spectrum of $M^{-1} A$ contains a number of small eigenvalues

Consequence

$\tilde{\kappa}\left(M^{-1} A\right)$ is large \rightarrow Slow convergence of the iterative process

Question

Can the convergence of PCG be improved by eliminating those small eigenvalues in some way?

Second level preconditioners

Second level preconditioners

Various choices are possible

- Projection vectors

Physical vectors, eigenvectors, domain decomposition vectors (constant, linear, ...)

- Projection method

Deflation, coarse grid projection, balancing, augmented, FETI

- Implementation
sparseness, with(out) using projection properties, optimized, stability, rounding errors, ...

Second level preconditioners

Deflated Krylov

History

Krylov	Ar	1950
Preconditioned Krylov	$M^{-1} \mathrm{Ar}$	1980
Block Preconditioned Krylov	$\sum_{i=1}^{r}\left(M_{i}^{-1}\right) A r$	1990
Block Preconditioned Deflated Krylov	$\sum_{i=1}^{r}\left(M_{i}^{-1}\right)$ PAr	2000

Deflated ICCG

Preliminaries

A is SPD, Conjugate Gradients

$$
P=I-A Z E^{-1} Z^{T} \text { with } E=Z^{T} A Z
$$

and $Z=\left[z_{1} \ldots z_{r}\right]$, where z_{1}, \ldots, z_{r} are independent deflation vectors.

Properties

(1) $P^{T} Z=0$ and $P A Z=0$
(2) $P^{2}=P$
(3) $A P^{T}=P A$

Second level preconditioners

Deflated ICCG

Decomposition

$$
\begin{gathered}
x=\left(I-P^{T}\right) x+P^{\top} x \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x=Z E^{-1} Z^{T} b, \quad A P^{T} x=P A x=P b
\end{gathered}
$$

$$
k=0, \hat{r}_{0}=P r_{0}, p_{1}=z_{1}=L^{-T} L^{-1} \hat{r}_{0}
$$

while $\left\|\hat{r}_{k}\right\|_{2}>\varepsilon$ do

$$
k=k+1 \text {; }
$$

$$
\alpha_{k}=\frac{\left(\hat{r}_{k-1}, z_{k-1}\right)}{\left(p_{k}, P A p_{k}\right)}
$$

$$
x_{k}=x_{k-1}+\alpha_{k} p_{k}
$$

$$
\hat{r}_{k}=\hat{r}_{k-1}-\alpha_{k} P A p_{k} ;
$$

$$
z_{k}=L^{-T} L^{-1} \hat{r}_{k} ;
$$

$$
\beta_{k}=\frac{\left(\hat{r}_{k}, z_{k}\right)}{\left(\hat{r}_{k-1}, z_{k-1}\right)}
$$

$$
p_{k+1}=z_{k}+\beta_{k} p_{k}
$$

end while

Choice of vectors

Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of $M^{-1} A$

Problem Ideal Choice of Z

These eigenvectors are too expensive to compute in practice and are not sparse

Alternative Choice of Z

Find projection vectors such that they

- approximate these eigenvectors
- are sparse
- are easy to parallelize

First step: Analyze small eigenvalues and corresponding eigenvectors

Analysis of Eigenvalues and Eigenvectors

Properties of Spectrum of $M^{-1} A$
Spectrum contains two classes of small eigenvalues:

- $\mathcal{O}\left(10^{-3}\right)$-eigenvalues corresponding with bubbles
- Small $\mathcal{O}(1)$-eigenvalues

One should get rid of these eigenvalues

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with $\mathcal{O}\left(10^{-3}\right)$-eigenvalues

- constant in bubbles
- linear elsewhere

Approximations

The vectors remain good approximations of the eigenvectors if

- the linear parts are perturbed arbitrarily
- the constant part are perturbed by a constant

Consequence

Level set projection vectors can approximate these eigenvectors
Note: the level set function is used as an indication function of the bubbles

Level set vectors

Projection subspace matrix

$Z=\left[\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{r}\end{array}\right]$ consists of $\left(z_{j}\right)_{i}= \begin{cases}0, & x_{i} \in \Omega \backslash \bar{\Omega}_{j} \\ 1, & x_{i} \in \Omega_{j}\end{cases}$

Subdomain Projection

Projection subspace matrix

$Z=\left[\begin{array}{llll}z_{1} & z_{2} & \cdots & z_{r}\end{array}\right]$ consists of
$\left(z_{j}\right)_{i}= \begin{cases}0, & x_{i} \in \Omega \backslash \bar{\Omega}_{j} \\ 1, & x_{i} \in \Omega_{j}\end{cases}$

Properties of Projection Vectors

Level set Projection Vectors

- Projection of $\mathcal{O}\left(10^{-3}\right)$-eigenvalues to zero
- Very sparse structure
- Only a few vectors required
- Change at each time step

Subdomain Projection Vectors

- Projection of $\mathcal{O}(1)$-eigenvalues to zero
- Sparse structure
- Reasonable number of vectors required
- The same for all time steps

Further Analysis

Combination of Level set and Subdomain Projection

Both approaches can be combined leading to level set-subdomain projection:

Properties of Level set-Subdomain Projection Vectors

- Projection of both $\mathcal{O}\left(10^{-3}\right)$ - and $\mathcal{O}(1)$-eigenvalues to zero
- Sparse structure
- Many level set-subdomain projection vectors are required
- Change at each time step

Problem with 5 bubbles, contrast 10^{-6} and varying grid size

		$n=16^{2}$		$n=32^{2}$		$n=64^{2}$	
Deflation Method	k	\# It.	CPU	\# It.	CPU	\# It.	CPU
ICCG	-	39	0.04	82	0.53	159	10.92
S-DICCG $-k$	3	37	0.12	80	0.67	194	14.01
	15	36	0.07	97	0.80	193	13.82
	63	19	0.11	16	0.20	26	2.14
L-DICCG- k	4	17	0.09	37	0.37	75	6.17
LS-DICCG- k	11	14	0.07	30	0.29	54	4.08
	35	10	0.08	21	0.32	40	3.05
	83	-	-	15	0.20	25	2.05

Numerical experiments

Problem with 5 bubbles, $n=64^{2}$ and varying contrast

		$\epsilon=10^{-3}$		$\epsilon=10^{-6}$	
Deflation Method	k	\# It.	CPU	\# It.	CPU
ICCG	-	118	8.12	159	10.92
S-DICCG- k	3	134	9.79	194	14.01
	15	131	9.60	193	13.82
	63	26	2.31	26	2.14
L-DICCG- k	4	74	5.98	75	6.17
LS-DICCG- k	11	54	4.05	54	4.08
	35	40	3.08	40	3.05
	83	25	2.46	25	2.41

Problem with a varying number of bubbles, $n=64^{2}$ and contrast 10^{-6}

Number of bubbles	1			2			5		
Deflation Method	k	\# It.	CPU	k	\# It.	CPU	k	\# It.	CPU
ICCG	-	89	6.13	-	104	7.20	-	159	10.92
S-DICCG $-k$	3	96	7.39	3	69	5.13	3	194	14.01
	15	52	3.97	15	64	4.79	15	193	13.82
	63	26	2.14	63	27	2.16	63	26	2.14
L-DICCG- k	0	-	-	1	79	5.79	4	75	6.17
LS-DICCG- k	7	67	5.30	6	65	5.11	11	54	4.08
	19	41	3.14	24	42	3.22	35	40	3.05
	67	26	2.50	72	26	2.11	83	25	2.05

Conclusions

Conclusions

- Deflation helps!
- Choice of deflation vectors is important
- Subdomain vectors give good results if the number of vectors is large enough
- Level set and Level set Subdomain vectors lead to convergence which is independent of the contrast
- Level set Subdomain vectors remove both $O\left(10^{-3}\right)$ and $O(1)$ eigenvalues

Further information

For papers on deflation see:
http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html

\section*{Delft Institute of Applied Mathematics
 | $\frac{4}{0}$ |
| :--- |
| 0 |}

[^0]: ${ }^{1}$ M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49, pp. 409-436, 1952.
 ${ }^{2}$ D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, 1973.

