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Introduction

Bubbly flow

Background

Simulation of flows with bubbles and droplets

Flow governed by the Navier-Stokes equations with
unknowns p an d u:
8

<

:

∂u

∂t
+ u · ∇u +

1

ρ
∇p =

1

ρ
∇ · µ

`

∇u + ∇uT
´

+ g

∇ · u = 0

Solution using operator-splitting methods

3 / 22



D
el

ft
In

st
it

u
te

o
f

A
p

p
lie

d
M

at
h

em
at

ic
s

Introduction Second level preconditioners Choice of vectors Level set vectors Numerical experiments Conclusions

Introduction

Problem Setting

Most Time-Consuming Part in Operator-Splitting Methods

Solve the linear system
Ax = b, A ∈ R

n×n

where A is large, sparse, SPSD, ill-conditioned and is originating from the pressure
equation

Origin of Linear System

Poisson equation with discontinuous density ρ:

div
„

1

ρ
∇p
«

= f

with Neumann boundary conditions
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Introduction

Traditional Krylov Solvers

Preconditioned Conjugate Gradients Method (PCG)1

Solve iteratively:
M−1Ax = M−1b

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

Mz = y is relatively easy to solve

M−1A has a smaller condition number than A

Theorem 2

Exact error of PCG after iteration j :

||x − xj ||A ≤ 2||x − x0||A

 
p

κ̃(M−1A) − 1
p

κ̃(M−1A) + 1

!j

1M.R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49, pp.
409–436, 1952.

2D.G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, 1973.5 / 22
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Introduction

Traditional Krylov Solvers

Problem of PCG

The spectrum of M−1A contains a number of small eigenvalues

Consequence

κ̃
`

M−1A
´

is large → Slow convergence of the iterative process

Question

Can the convergence of PCG be improved by eliminating those small eigenvalues in
some way?
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Second level preconditioners

Second level preconditioners

Various choices are possible

Projection vectors
Physical vectors, eigenvectors, domain decomposition vectors (constant, linear, ...)

Projection method
Deflation, coarse grid projection, balancing, augmented, FETI

Implementation
sparseness, with(out) using projection properties, optimized, stability, rounding
errors, ...
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Second level preconditioners

Deflated Krylov

History

Krylov Ar 1950

Preconditioned Krylov M−1Ar 1980

Block Preconditioned Krylov
r
P

i=1
(M−1

i )Ar 1990

Block Preconditioned Deflated Krylov
r
P

i=1
(M−1

i )PAr 2000
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Second level preconditioners

Deflated ICCG

Preliminaries

A is SPD, Conjugate Gradients

P = I − AZE−1Z T with E = Z T AZ

and Z = [z1...zr ], where z1, ..., zr are independent deflation vectors.

Properties

1 PT Z = 0 and PAZ = 0
2 P2 = P
3 APT = PA
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Second level preconditioners

Deflated ICCG

Decomposition

x = (I − PT )x + PT x

(I − PT )x = ZE−1Z T Ax = ZE−1Z T b, APT x = PAx = Pb

DICCG

k = 0, r̂0 = Pr0, p1 = z1 = L−T L−1 r̂0;

while ‖r̂k‖2 > ε do
k = k + 1;

αk =
(r̂k−1,zk−1)

(pk ,PApk )
;

xk = xk−1 + αk pk ;
r̂k = r̂k−1 − αk PApk ;
zk = L−T L−1 r̂k ;
βk =

(r̂k ,zk )
(r̂k−1,zk−1)

;

pk+1 = zk + βk pk ;
end while
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Choice of vectors

Choice of vectors

Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of M−1A

Problem Ideal Choice of Z

These eigenvectors are too expensive to compute in practice and are not sparse

Alternative Choice of Z

Find projection vectors such that they

approximate these eigenvectors

are sparse

are easy to parallelize

First step: Analyze small eigenvalues and corresponding eigenvectors
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Choice of vectors

Analysis of Eigenvalues and Eigenvectors

Properties of Spectrum of M−1A

Spectrum contains two classes of small eigenvalues:

O(10−3)-eigenvalues corresponding with bubbles

Small O(1)-eigenvalues

One should get rid of these eigenvalues
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Choice of vectors

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with O(10−3)-eigenvalues

constant in bubbles

linear elsewhere

Approximations

The vectors remain good approximations of the eigenvectors if

the linear parts are perturbed arbitrarily

the constant part are perturbed by a constant

Consequence

Level set projection vectors can approximate these eigenvectors

Note: the level set function is used as an indication function of the bubbles
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Level set vectors

Level set vectors

Ω1

Ω2

Ω

Projection subspace matrix

Z = [z1 z2 · · · zr ] consists of

(zj )i =



0, xi ∈ Ω \ Ω̄j
1, xi ∈ Ωj
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Level set vectors

Subdomain Projection

Ω

Ω

ΩΩ

Ω1 2

3 4

Projection subspace matrix

Z = [z1 z2 · · · zr ] consists of

(zj )i =



0, xi ∈ Ω \ Ω̄j
1, xi ∈ Ωj
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Level set vectors

Properties of Projection Vectors

Level set Projection Vectors

Projection of O(10−3)-eigenvalues to zero

Very sparse structure

Only a few vectors required

Change at each time step

Subdomain Projection Vectors

Projection of O(1)-eigenvalues to zero

Sparse structure

Reasonable number of vectors required

The same for all time steps
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Level set vectors

Further Analysis

Combination of Level set and Subdomain Projection

Both approaches can be combined leading to level set-subdomain projection:

1

2

3

5

4

6

8 11

107

9 12

Properties of Level set-Subdomain Projection Vectors

Projection of both O(10−3)- and O(1)-eigenvalues to zero

Sparse structure

Many level set-subdomain projection vectors are required

Change at each time step
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Numerical experiments

Problem with 5 bubbles, contrast 10−6 and varying grid size

n = 162 n = 322 n = 642

Deflation Method k # It. CPU # It. CPU # It. CPU

ICCG – 39 0.04 82 0.53 159 10.92
S-DICCG−k 3 37 0.12 80 0.67 194 14.01

15 36 0.07 97 0.80 193 13.82
63 19 0.11 16 0.20 26 2.14

L-DICCG−k 4 17 0.09 37 0.37 75 6.17
LS-DICCG−k 11 14 0.07 30 0.29 54 4.08

35 10 0.08 21 0.32 40 3.05
83 – – 15 0.20 25 2.05
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Numerical experiments

Problem with 5 bubbles, n = 642 and varying contrast

ǫ = 10−3 ǫ = 10−6

Deflation Method k # It. CPU # It. CPU

ICCG – 118 8.12 159 10.92
S-DICCG−k 3 134 9.79 194 14.01

15 131 9.60 193 13.82
63 26 2.31 26 2.14

L-DICCG−k 4 74 5.98 75 6.17
LS-DICCG−k 11 54 4.05 54 4.08

35 40 3.08 40 3.05
83 25 2.46 25 2.41
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Numerical experiments

Problem with a varying number of bubbles, n = 642 and contrast 10−6

Number of bubbles 1 2 5
Deflation Method k # It. CPU k # It. CPU k # It. CPU

ICCG – 89 6.13 – 104 7.20 – 159 10.92
S-DICCG−k 3 96 7.39 3 69 5.13 3 194 14.01

15 52 3.97 15 64 4.79 15 193 13.82
63 26 2.14 63 27 2.16 63 26 2.14

L-DICCG−k 0 – – 1 79 5.79 4 75 6.17
LS-DICCG−k 7 67 5.30 6 65 5.11 11 54 4.08

19 41 3.14 24 42 3.22 35 40 3.05
67 26 2.50 72 26 2.11 83 25 2.05
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Conclusions

Conclusions

Conclusions

Deflation helps!

Choice of deflation vectors is important

Subdomain vectors give good results if the number of vectors is large enough

Level set and Level set Subdomain vectors lead to convergence which is
independent of the contrast

Level set Subdomain vectors remove both O(10−3) and O(1) eigenvalues
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Conclusions

Further information

For papers on deflation see:

http://ta.twi.tudelft.nl/nw/users/vuik/pub it def.html
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