Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions

On the choice of abstract projection vectors for second level preconditioners

C. Vuik¹, J.M. Tang¹, and R. Nabben²

¹ Delft University of Technology Delft Institute of Applied Mathematics

²Technische Universität Berlin Institut für Mathematik

ECCOMAS 2008 July, 2008

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions

Outline

Choice of vectors

4 Level set vectors

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Introduction ●000	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
Introduction					
Bubbly f	low				

Background

- Simulation of flows with bubbles and droplets
- Flow governed by the Navier-Stokes equations with unknowns p and u:

$$\begin{cases} \frac{\partial u}{\partial t} + u \cdot \nabla u + \frac{1}{\rho} \nabla p = \frac{1}{\rho} \nabla \cdot \mu \left(\nabla u + \nabla u^T \right) + g \\ \nabla \cdot u = 0 \end{cases}$$

(a)

Solution using operator-splitting methods

Delft

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions		
Introduction							
Problem Setting							

Most Time-Consuming Part in Operator-Splitting Methods

Solve the linear system

$$Ax = b, \quad A \in \mathbb{R}^{n \times n}$$

where A is large, sparse, SPSD, ill-conditioned and is originating from the pressure equation

Origin of Linear System

Poisson equation with discontinuous density ρ :

$$\operatorname{div}\left(\frac{1}{\rho}\nabla p\right) = f$$

with Neumann boundary conditions

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
0000	0000	000	0000	000	00
Introduction					

Traditional Krylov Solvers

Preconditioned Conjugate Gradients Method (PCG)¹

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

- Mz = y is relatively easy to solve
- $M^{-1}A$ has a smaller condition number than A

Theorem ²

Exact error of PCG after iteration *j*:

$$||x - x_j||_A \le 2||x - x_0||_A \left(\frac{\sqrt{\tilde{\kappa}(M^{-1}A) - 1}}{\sqrt{\tilde{\kappa}(M^{-1}A) + 1}}\right)$$

¹M.R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Research Nat. Bur. Standards, 49, pp. 409–436, 1952.

²D.G. LUENBERGER, Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, 1973.

Introduction 000●	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
Introduction					
Traditior	nal Krylov Solvers				

Problem of PCG

The spectrum of $M^{-1}A$ contains a number of small eigenvalues

Consequence

 $\tilde{\kappa}$ ($M^{-1}A$) is large \rightarrow Slow convergence of the iterative process

Question

Can the convergence of PCG be improved by eliminating those small eigenvalues in some way?

▲ロ → ▲ 榔 → ▲ 車 → ▲ 車 → りへで

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions		
0000	0000	000	0000	000	00		
Second level preconditioners							

Second level preconditioners

Various choices are possible

Projection vectors
 Physical vectors, eigenvectors, domain decomposition vectors (constant, linear, ...)

Projection method Deflation, coarse grid projection, balancing, augmented, FETI

Implementation

sparseness, with(out) using projection properties, optimized, stability, rounding errors, \ldots

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions		
Second level preconditioners							
Deflated	d Krylov						

History			
٢	Krylov	Ar	1950
F	Preconditioned Krylov	M ^{−1} Ar	1980
E	Block Preconditioned Krylov	$\sum_{i=1}^{r} (M_i^{-1}) Ar$	1990
E	Block Preconditioned Deflated Krylov	$\sum_{i=1}^{r} (M_i^{-1}) PAr$	2000

fUDelft

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions		
	0000						
Second level preconditioners							
Deflater							

Preliminaries

A is SPD, Conjugate Gradients

$$P = I - AZE^{-1}Z^T$$
 with $E = Z^T AZ$

and $Z = [z_1...z_r]$, where $z_1, ..., z_r$ are independent deflation vectors.

Properties

•
$$P^T Z = 0$$
 and $PAZ = 0$
• $P^2 = P$
• $AP^T = PA$

◆□ → ◆□ → ◆三 → ◆三 → のへで

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions		
	0000						
Second level preconditioners							
Deflated	LICCG						

Decomposition

$$x = (I - P^T)x + P^T x$$

$$(I - P^T)x = ZE^{-1}Z^TAx = ZE^{-1}Z^Tb,$$
 $AP^Tx = PAx = Pb$

DICCG

$$k = 0, \ \hat{r}_0 = Pr_0, \ p_1 = z_1 = L^{-T}L^{-1}\hat{r}_0$$

fUDelft

Introduction	Second level preconditioners	Choice of vectors ●○○	Level set vectors	Numerical experiments	Conclusions
Choice of vectors	\$				
Choice of	of vectors				

Ideal Choice of Z

Z consists of eigenvectors associated with small eigenvalues of $M^{-1}A$

Problem Ideal Choice of Z

These eigenvectors are too expensive to compute in practice and are not sparse

Alternative Choice of Z

Find projection vectors such that they

- approximate these eigenvectors
- are sparse
- are easy to parallelize

First step: Analyze small eigenvalues and corresponding eigenvectors

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
		000			
Choice of vectors					

Analysis of Eigenvalues and Eigenvectors

Properties of Spectrum of $M^{-1}A$

Spectrum contains two classes of small eigenvalues:

- O(10⁻³)-eigenvalues corresponding with bubbles
- Small O(1)-eigenvalues

One should get rid of these eigenvalues

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
		000			
Choice of vectors					

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with $\mathcal{O}(10^{-3})$ -eigenvalues

- constant in bubbles
- linear elsewhere

Approximations

The vectors remain good approximations of the eigenvectors if

- the linear parts are perturbed arbitrarily
- the constant part are perturbed by a constant

Consequence

Level set projection vectors can approximate these eigenvectors

Note: the level set function is used as an indication function of the bubbles

Introduction	Second level preconditioners	Choice of vectors	Level set vectors ●000	Numerical experiments	Conclusions
Level set vectors					
Level se	t vectors				

Projection subspace matrix

$$Z = \begin{bmatrix} z_1 & z_2 & \cdots & z_r \end{bmatrix} \text{ consists of} \\ (z_j)_i = \begin{cases} 0, & x_i \in \Omega \setminus \bar{\Omega}_j \\ 1, & x_i \in \Omega_j \end{cases}$$

fUDelft

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
Level set vectors	5				
Subdom	ain Projection				

Ω

Projection subspace matrix

$$Z = [z_1 \ z_2 \ \cdots \ z_r] \text{ consists of} \\ (z_j)_i = \begin{cases} 0, & x_i \in \Omega \setminus \bar{\Omega}_j \\ 1, & x_i \in \Omega_j \end{cases}$$

TUDelft

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
			0000		
Level set vectors					

Properties of Projection Vectors

Level set Projection Vectors

- Projection of O(10⁻³)-eigenvalues to zero
- Very sparse structure
- Only a few vectors required
- Change at each time step

Subdomain Projection Vectors

- Projection of O(1)-eigenvalues to zero
- Sparse structure
- Reasonable number of vectors required
- The same for all time steps

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions	
Level set vectors	;					
Further	Analysis					

Combination of Level set and Subdomain Projection

Both approaches can be combined leading to level set-subdomain projection:

Properties of Level set-Subdomain Projection Vectors

- Projection of both $\mathcal{O}(10^{-3})$ and $\mathcal{O}(1)$ -eigenvalues to zero
- Sparse structure
- Many level set-subdomain projection vectors are required
- Change at each time step

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
				000	
Numerical experin	ments				

Problem with 5 bubbles, contrast 10^{-6} and varying grid size

		$n = 16^2$		$n = 32^2$		$n = 64^2$	
Deflation Method	k	# lt.	CPU	# lt.	CPU	# lt.	CPU
ICCG	-	39	0.04	82	0.53	159	10.92
S-DICCG-k	3	37	0.12	80	0.67	194	14.01
	15	36	0.07	97	0.80	193	13.82
	63	19	0.11	16	0.20	26	2.14
L-DICCG-k	4	17	0.09	37	0.37	75	6.17
LS-DICCG-k	11	14	0.07	30	0.29	54	4.08
	35	10	0.08	21	0.32	40	3.05
	83	-	-	15	0.20	25	2.05

< □> < □> < □> < □> < □>

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
				000	
Numerical experin	nents				

Problem with 5 bubbles, $n = 64^2$ and varying contrast

		$\epsilon = 10^{-3}$		$\epsilon =$	10 ⁻⁶	
Deflation Method	k	# It.	CPU	# It.	CPU	
ICCG	-	118	8.12	159	10.92	
S-DICCG-k	3	134	9.79	194	14.01	
	15	131	9.60	193	13.82	
	63	26	2.31	26	2.14	
L-DICCG-k	4	74	5.98	75	6.17	
LS-DICCG-k	11	54	4.05	54	4.08	
	35	40	3.08	40	3.05	
	83	25	2.46	25	2.41	

(□) (□) (□) (□) (□) (□) (□)

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions
				000	
Numerical experin	nents				

Problem with a varying number of bubbles, $n = 64^2$ and contrast 10^{-6}

Number of bubbles		1			2			5		
Deflation Method	k	# lt.	CPU	k	# lt.	CPU	k	# lt.	CPU	
ICCG	-	89	6.13	-	104	7.20	-	159	10.92	
S-DICCG-k	3	96	7.39	3	69	5.13	3	194	14.01	
	15	52	3.97	15	64	4.79	15	193	13.82	
	63	26	2.14	63	27	2.16	63	26	2.14	
L-DICCG-k	0	-	-	1	79	5.79	4	75	6.17	
LS-DICCG-k	7	67	5.30	6	65	5.11	11	54	4.08	
	19	41	3.14	24	42	3.22	35	40	3.05	
	67	26	2.50	72	26	2.11	83	25	2.05	

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions ●○
Conclusions					
Conclus	sions				

Conclusions

- Deflation helps!
- Choice of deflation vectors is important
- Subdomain vectors give good results if the number of vectors is large enough
- Level set and Level set Subdomain vectors lead to convergence which is independent of the contrast
- Level set Subdomain vectors remove both $O(10^{-3})$ and O(1) eigenvalues

Introduction	Second level preconditioners	Choice of vectors	Level set vectors	Numerical experiments	Conclusions ○●
Conclusions					
Further	information				

For papers on deflation see:

http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html