Deflation acceleration for a domain decomposition preconditioner

Kees Vuik and Reinhard Nabben
Delft Institute of Applied Mathematics
c.vuik@math.tudelft.nl
http://ta.twi.tudelft.nl/users/vuik/
8th European Multigrid Conference
Scheveningen The Hague, The Netherlands

September 27-30, 2005

Contents

1. Introduction
2. Deflation
3. Comparison with Additive Coarse Grid Correction
4. Comparison with Balancing preconditioner
5. Deflation and multi grid?
6. Conclusions

1. Introduction

Efficient solution of a linear system, where A is SPD,

$$
A x=b .
$$

Conjugate Gradient, Preconditioner, Coarse Grid Acceleration.

1. Introduction

Efficient solution of a linear system, where A is SPD,

$$
A x=b .
$$

Conjugate Gradient, Preconditioner, Coarse Grid Acceleration.
The convergence of CG depends on the effective condition number.
Coarse Grid Acceleration to eliminate the effect of 'bad' eigenvalues.

1. Introduction

Efficient solution of a linear system, where A is SPD,

$$
A x=b .
$$

Conjugate Gradient, Preconditioner, Coarse Grid Acceleration.
The convergence of CG depends on the effective condition number.
Coarse Grid Acceleration to eliminate the effect of 'bad' eigenvalues.
Motivation

- large jumps in the coefficients
- domain decomposition/block preconditioners (parallel)
- IC preconditioners (serial)

Parallel scalability

subdomain grid size 50×50, wall clock time, Cray T3E

TUDelft

References

Deflated CG and coarse grid projection vectors
Nicolaides 1987, Mansfield 1990, Kolotilina 1998, Vuik, Segal and Meijerink 1999, Saad, Yeung, Erhel and Guyomarc'h 2000, Frank and Vuik 2001, Nabben and Vuik 2004

Additive Coarse Grid Correction
Bramble, Pasciak and Schatz 1986, Dryja and Widlund 1991, Smith, Bjorstad and Gropp 1996, Benzi, Frommer, Nabben and Szyld 2001

Balancing (Neumann-Neumann) preconditioner
Mandel 1993, Dryja and Widlund 1995, Mandel and Brezina 1996,
Pavarino and Widlund 2002

Decomposition of a cell centered domain (FDM and FVM)

original domain

Decomposition of a cell centered domain (FDM and FVM)

subdomain 1

subdomain 2

$$
\bar{\Omega}=\bigcup_{i=1}^{m} \bar{\Omega}_{i}
$$

Decomposition of a vertex centered domain (FEM)

subdomain 1

subdomain 2

Matrix for cell centered domain

Block system:

$$
\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 m} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \ldots & A_{m m}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Subdomain block Jacobi matrix $K(A) \in \mathbb{R}^{n \times n}$

$$
K(A)=\left[\begin{array}{lll}
A_{11} & & \\
& \ddots & \\
& & A_{m m}
\end{array}\right]
$$

Preconditioner for cell centered domain

Preconditioner $M \in \mathbb{R}^{n \times n}$

$$
M=\left[\begin{array}{lll}
M_{11} & & \\
& \ddots & \\
& & M_{m m}
\end{array}\right]
$$

where $M_{i i}$ is a rough estimate of $A_{i i}$ (e.g. IC decomposition).

2. Deflation

$$
\begin{gathered}
Z \in \mathbb{R}^{n \times r} \\
A x=b, \quad P_{D}=I-A Z\left(Z^{T} A Z\right)^{-1} Z^{T}
\end{gathered}
$$

Note that $P_{D} A$ is a symmetric, positive semi definite singular matrix.

2. Deflation

$$
\begin{gathered}
Z \in \mathbb{R}^{n \times r} \\
A x=b, \quad P_{D}=I-A Z\left(Z^{T} A Z\right)^{-1} Z^{T}
\end{gathered}
$$

Note that $P_{D} A$ is a symmetric, positive semi definite singular matrix.
We use $x=\left(I-P_{D}^{T}\right) x+P_{D}^{T} x$

Compute both terms:

1. $\left(I-P_{D}^{T}\right) x=Z\left(Z^{T} A Z\right)^{-1} Z^{T} A x=Z\left(Z^{T} A Z\right)^{-1} Z^{T} b$,
2. Solve $P_{D} A \tilde{x}=P_{D} b$,
3. Form $P_{D}^{T} \tilde{x} \quad$ (Theorem: $P_{D}^{T} x=P_{D}^{T} \tilde{x}$).

Identity $P_{D}^{T} \tilde{x}=P_{D}^{T} x$

$$
P_{D}=I-A Z\left(Z^{T} A Z\right)^{-1} Z^{T}
$$

We have

$$
\begin{gathered}
A P_{D}^{T}=P_{D} A, \quad P_{D}^{T} A^{-1}=A^{-1} P_{D} \\
A P_{D}^{T} \tilde{x}=P_{D} A \tilde{x}=P_{D} b \\
P_{D}^{T} \tilde{x}=A^{-1} A P_{D}^{T} \tilde{x}=A^{-1}\left(P_{D} A \tilde{x}\right)=A^{-1}\left(P_{D} b\right)=P_{D}^{T} A^{-1} b=P_{D}^{T} x
\end{gathered}
$$

\tilde{x} is not unique, but $P_{D}^{T} \tilde{x}$ is unique.

Choice of projection vectors

Choose projection vectors equal to coarse grid vectors

- $z_{i}=1$ on $\bar{\Omega}_{i}$
- $z_{i}=0$ on $\Omega \backslash \bar{\Omega}_{i}$

Enlargement of the projection space helps

Theorem (Nabben and Vuik 2004)
Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Let $Z_{1} \in \mathbb{R}^{n \times r}$ and $Z_{2} \in \mathbb{R}^{n \times s}$ with $\operatorname{rank} Z_{1}=r$ and $\operatorname{rank} Z_{2}=s$. Let $E_{1}:=Z_{1}^{T} A Z_{1}$ and $E_{2}:=Z_{2}^{T} A Z_{2}$. If $\operatorname{Im} Z_{1} \subseteq \operatorname{Im} Z_{2}$, then

$$
\begin{aligned}
\lambda_{n}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \geq \lambda_{n}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right) \\
\lambda_{r+1}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \leq \lambda_{s+1}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right)
\end{aligned}
$$

Enlargement of the projection space helps

Theorem (Nabben and Vuik 2004)
Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Let $Z_{1} \in \mathbb{R}^{n \times r}$ and
$Z_{2} \in \mathbb{R}^{n \times s}$ with $\operatorname{rank} Z_{1}=r$ and $\operatorname{rank} Z_{2}=s$. Let $E_{1}:=Z_{1}^{T} A Z_{1}$ and $E_{2}:=Z_{2}^{T} A Z_{2}$. If $\operatorname{Im} Z_{1} \subseteq \operatorname{Im} Z_{2}$, then

$$
\begin{aligned}
\lambda_{n}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \geq \lambda_{n}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right) \\
\lambda_{r+1}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) & \leq \lambda_{s+1}\left(\left(I-A Z_{2} E_{2}^{-1} Z_{2}^{T}\right) A\right)
\end{aligned}
$$

Theorem (Tang and Vuik 2005)

$$
\begin{aligned}
\lambda_{n}(A) & \geq \lambda_{n}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right) \\
\lambda_{1}(A) & \leq \lambda_{r+1}\left(\left(I-A Z_{1} E_{1}^{-1} Z_{1}^{T}\right) A\right)
\end{aligned}
$$

3. Comparison of Deflation and Additive Coarse Grid Correction

$$
\begin{array}{ll}
\qquad P_{D}=I-A Z E^{-1} Z^{T} & P_{C}=I+\sigma Z E^{-1} Z^{T} \\
M^{-1} P_{D}=M^{-1}-M^{-1} A Z E^{-1} Z^{T} & P_{C M^{-1}}=M^{-1}+\sigma Z E^{-1} Z^{T} \\
\text { where } E=Z^{T} A Z
\end{array}
$$

Work per iteration:

- 1 matrix vector product
- 1 preconditioner vector product
- 1 coarse grid operator

Comparison of Deflation and Additive Coarse Grid Correction

Definition
Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.
Take $Z=\left[v_{1} \ldots v_{r}\right]$.

Theorem

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{r+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{C} A$ is $\left\{\sigma+\lambda_{1}, \ldots, \sigma+\lambda_{r}, \lambda_{r+1}, \ldots, \lambda_{n}\right\}$

Comparison of Deflation and Additive Coarse Grid Correction

Proof

Note that $P_{D} A=\left(I-Z Z^{T}\right) A$, so

$$
\begin{aligned}
& P_{D} A v_{i}=\left(I-Z Z^{T}\right) \lambda_{i} v_{i}=0, \quad \text { for } 1 \leq i \leq r, \\
& P_{D} A v_{i}=\left(I-Z Z^{T}\right) \lambda_{i} v_{i}=\lambda_{i} v_{i}, \quad \text { for } r+1 \leq i \leq n .
\end{aligned}
$$

Since $P_{C} A=\left(A+\sigma Z Z^{T}\right)$ we obtain:

$$
\begin{aligned}
& P_{C} A v_{i}=\left(A+\sigma Z Z^{T}\right) v_{i}=\left(\lambda_{i}+\sigma\right) v_{i}, \text { for } 1 \leq i \leq r, \\
& P_{C} A v_{i}=\left(A+\sigma Z Z^{T}\right) v_{i}=\lambda_{i} v_{i}, \quad \text { for } r+1 \leq i \leq n .
\end{aligned}
$$

Comparison of Deflation and Additive Coarse Grid Correction

Corollary

$$
\operatorname{cond}_{e f f}\left(P_{D} A\right)=\frac{\lambda_{n}}{\lambda_{r+1}} \leq \frac{\max \left\{\lambda_{n}, \sigma+\lambda_{r}\right\}}{\min \left\{\lambda_{r+1}, \sigma+\lambda_{1}\right\}}=\operatorname{cond}\left(P_{C} A\right)
$$

- The eigenvalues of $P_{C} A$ has a worse distribution than the eigenvalues of $P_{D} A$

Conclusion
Deflation is asymptotically better than additive coarse grid correction!

This also holds for the preconditioning and general projection vectors

Results for eigenvectors

The eigenvalues of A are $1,2,3, \ldots, 99,100$.
The eigenvectors v_{1}, \ldots, v_{10} are used as projection vectors.

Results for eigenvectors

The eigenvalues of A are $10^{-6}, \ldots 10^{-6}, 11,12,13, \ldots, 99,100$.
The eigenvectors v_{1}, \ldots, v_{10} are used as projection vectors.

TUDelft

4. Comparison of Deflation and the Balancing preconditioner

$$
\begin{gathered}
M^{-1} P_{D}=M^{-1}-M^{-1} A Z E^{-1} Z^{T} \\
P_{B}=\left(I-Z E^{-1} Z^{T} A\right) M^{-1}\left(I-A Z E^{-1} Z^{T}\right)+Z E^{-1} Z^{T} \\
P_{B}=P_{D}^{T} M^{-1} P_{D}+Z E^{-1} Z^{T}
\end{gathered}
$$

Work per iteration:

Deflation

Balancing
(depends on implementation)
3
1
2

matrix vector product	1	3
preconditioner vector product	1	1
coarse grid operator	1	2

Comparison of Deflation and the Balancing preconditioner

Take $Z=\left[v_{1} \ldots v_{r}\right]$ and $M=I$.

Theorem

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{r+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{B} A$ is $\left\{1, \ldots, 1, \lambda_{r+1}, \ldots, \lambda_{n}\right\}$

$$
\operatorname{cond}_{e f f}\left(P_{D} A\right)=\frac{\lambda_{n}}{\lambda_{r+1}} \leq \frac{\max \left\{\lambda_{n}, 1\right\}}{\min \left\{\lambda_{r+1}, 1\right\}}=\operatorname{cond}\left(P_{B} A\right)
$$

Deflation is asymptotically better than the Balancing preconditioner!

Results for eigenvectors v_{1}, \ldots, v_{10}

The eigenvalues of A are $1,2,3, \ldots, 99,100$.

Results for eigenvectors v_{1}, \ldots, v_{10}

The eigenvalues of A are $0.1,0.2,0.3, \ldots, 9.9,10$.

THODeft

Results for eigenvectors v_{1}, \ldots, v_{10}

The eigenvalues of A are $0.01,0.02,0.03, \ldots, 0.99,1$.

5. Deflation and multi grid?

Is it possible to generalize the two grid Deflation approach to a multi grid Deflation?

Idea repeat the procedure on the small matrix E. Required accuracy of the inner iteration?

We replace E^{-1} by $\tilde{E}^{-1}=(I+\epsilon R) E^{-1}(I+\epsilon R)$, where R is a symmetric $r \times r$ matrix with random elements chosen from the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

Deflation and multi grid?

Poisson problem with 7 projection vectors

6. Conclusions

- Block preconditioned Krylov methods combined with Deflation, CGC, or BNN are well parallelizable (scalable, good speed up)
- Deflation needs less iterations than additive coarse grid correction, and uses the same amount of work per iteration
- Deflation uses less (approximately the same) iterations as the Balancing preconditioner, but uses less work per iteration.
- Generalization of two grid Deflation to multi grid Deflation is not straightforward.

Further information

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html

Further information

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- C. Vuik, A. Segal and J.A. Meijerink An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients J. Comp. Phys., 152, pp. 385-403, 1999.
- J. Frank and C. Vuik

On the construction of deflation-based preconditioners
SIAM Journal on Scientific Computing, 23, pp. 442-462, 2001

- R. Nabben and C. Vuik

A comparison of Deflation and Coarse Grid Correction applied to porous media flow
SIAM J. on Numerical Analysis, 42, pp. 1631-1647, 2004

- R. Nabben and C. Vuik

A comparison of Deflation and the Balancing preconditioner
SIAM Journal on Scientific Computing, to appear

