"Shifted Laplace" preconditioners for the Helmholtz equations

C. Vuik, Y.A. Erlangga, and C.W. Oosterlee
c.vuik@math.tudelft.nl
http://ta.twi.tudelft.nl/users/vuik/

Delft University of Technology

ENUMATH 2003

The European Conference on Numerical Mathematics and Advanced Applications

August 18-22, 2003, Prague, Czech Republic

Contents

1. Introduction
2. Survey of solution methods
3. Survey of preconditioners
4. Properties of the "Shifted Laplace" preconditioners
5. Numerical experiments
6. Conclusions

Wim Mulder, René Edouard Plessix, Paul Urbach

Financially supported by the Dutch Ministry of Economic Affairs: project BTS01044

1. Introduction

The Helmholtz problem is defined as follows

$$
\begin{aligned}
\Delta u+k^{2} u=f, & \text { in } \quad \Omega, \\
\text { Boundary condition } & \text { on } \quad \Gamma=\partial \Omega,
\end{aligned}
$$

where:

- $k=k(x, y, z)$ is the wavenumber
- for "solid" boundaries: Dirichlet/Neumann
- for "fictitious" boundaries: Sommerfeld $\frac{d u}{d n}-\mathrm{i} k u=0$

Application: geophysical survey

hard Marmousi Model

$\stackrel{\$}{\mathbf{T}} \cup$ Delft

Application: optical storage

Model for Blu-Ray disk

Discretization

In general: Finite Difference/Finite Element Methods.
Particular to the present case: 5-point Finite Difference stencil, $\mathcal{O}\left(h^{2}\right)$.
Linear system

$$
A x=b, \quad A \in \mathbb{C}^{N \times N}, b, x \in \mathbb{C}^{N},
$$

Discretization

In general: Finite Difference/Finite Element Methods.
Particular to the present case: 5-point Finite Difference stencil, $\mathcal{O}\left(h^{2}\right)$.
Linear system

$$
A x=b, \quad A \in \mathbb{C}^{N \times N}, b, x \in \mathbb{C}^{N},
$$

A is a sparse, highly indefinite matrix for practical values of k. Special property $A=A^{T}$.

For high resolution a very fine grid is required: $30-60$ gridpoints per wavelength (or $\approx 5-10 \times k$) $\rightarrow A$ is extremely large!
2. Survey of solution methods

Special Krylov methods

- COCG
van der Vorst and Melissen, 1990
- QMR

Freund and Nachtigal, 1991

2. Survey of solution methods

Special Krylov methods

- COCG van der Vorst and Melissen, 1990
- QMR Freund and Nachtigal, 1991

General purpose Krylov methods

- CGNR Paige and Saunders, 1975
- Short recurrences

CGS Sonneveld, 1989
Bi-CGSTAB van der Vorst, 1992

- Minimal residual

GMRES Saad and Schultz, 1986
GCR Eisenstat, Elman and Schultz, 1983
GMRESR van der Vorst and Vuik, 1994

3. Survey of preconditioners

Equivalent linear system $M_{1}^{-1} A M_{2}^{-1} \tilde{x}=\tilde{b}$, where $M=M_{1} \cdot M_{2}$ is the preconditioning matrix and

$$
\tilde{x}=M_{2} x, \quad \tilde{b}=M_{1} b
$$

Requirements for a preconditioner

- better spectral properties of $M^{-1} A$
- cheap to perform $M^{-1} r$.

Spectrum of A is $\left\{\mu_{i}-k^{2}\right\}$, with k is constant and μ_{i} are the eigenvalues of the Laplace operator. Note $\mu_{1}-k^{2}$ may be negative.

Survey of preconditioners

ILU Meijerink and van der Vorst, 1977
ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997
Multigrid Lahaye, 2001
Elman, Ernst and O' Leary, 2001

Survey of preconditioners

ILU Meijerink and van der Vorst, 1977
ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997
Multigrid Lahaye, 2001
Elman, Ernst and O' Leary, 2001

AILU	Gander and Nataf, 2001 analytic parabolic factorization
ILU-SV	Plessix and Mulder, 2003 separation of variables

Survey of preconditioners

$\begin{array}{ll}\text { Laplace operator } & \text { Bayliss and Turkel, } 1983 \\ \text { Definite Helmholtz } & \text { Laird, } 2000 \\ \text { Shifted Laplace } & \text { Y.A. Erlangga, C. Vuik and C.W.Oosterlee, } 2003\end{array}$

Survey of preconditioners

Laplace operator Bayliss and Turkel, 1983
Definite Helmholtz Laird, 2000
Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003
Shifted Laplace preconditioner

$$
M \equiv \Delta-(\alpha+\mathrm{i} \beta) k^{2}, \quad \alpha, \beta \in \mathbb{R}, \text { and } \alpha \geq 0
$$

Condition $\alpha \geq 0$ is used to ensure that M is a (semi) definite operator.
$\rightarrow \alpha, \beta=0 \quad: \quad$ Bayliss and Turkel
$\rightarrow \alpha=1, \beta=0 \quad$: Laird

4. Properties of the "Shifted Laplace" preconditioners

Motivation: continuous problem
Consider 1D Helmholtz problem with Dirichlet boundary conditions.
Continuous generalized eigenvalue problem:

$$
\left(\frac{d^{2}}{d x^{2}}+k^{2}\right) \phi_{v}=\lambda\left(\frac{d^{2}}{d x^{2}}-(\alpha+\mathbf{i} \beta) k^{2}\right) \phi_{v}
$$

Eigenvalues:

$$
\lambda_{n}=\frac{k_{n}^{2}-k^{2}}{k_{n}^{2}+(\alpha+\mathbf{i} \beta) k^{2}}, \quad k_{n}=n \pi, \quad n \in \mathbb{N} \backslash\{0\},
$$

or, in modulus,

$$
\left|\lambda_{n}\right|^{2}=\frac{\left(k_{n}-k^{2}\right)^{2}}{\left(k_{n}^{2}+\alpha k^{2}\right)^{2}+\beta^{2} k^{4}} .
$$

Spectral properties $\left(\alpha^{2}+\beta^{2} \neq 0\right)$

Maximum $|\lambda|$
For finite k and $k_{n} \rightarrow \infty:\left|\lambda_{n}\right|^{2}=1$, and for $k \rightarrow \infty:\left|\lambda_{1}\right|^{2}=\frac{1}{\alpha^{2}+\beta^{2}}$, so

$$
\left|\lambda_{\max }\right|^{2}=\max \left(\frac{1}{\alpha^{2}+\beta^{2}}, 1\right) .
$$

Minimum $|\lambda|$
Assume $\left|\lambda_{\text {min }}\right| \approx 0$. This implies $k_{j} \approx k$, or $k_{j}=k+\epsilon$. Substitution leads to:

$$
\left|\lambda_{\min }\right|^{2}=\frac{4}{(1+\alpha)^{2}+\beta^{2}}\left(\frac{\epsilon}{k}\right)^{2} .
$$

Condition number

For $\alpha=0$ and $\beta=0$, condition number $\kappa^{2}=\frac{k^{6}}{4 \pi^{4} \epsilon^{2}}$.
For other values of α and β we have

$$
\kappa^{2}= \begin{cases}\frac{1}{4}\left(1+\frac{1+2 \alpha}{\alpha^{2}+\beta^{2}}\right)(k / \epsilon)^{2}, & \alpha^{2}+\beta^{2} \leq 1, \\ \frac{1}{4}\left((1+\alpha)^{2}+\beta^{2}\right)(k / \epsilon)^{2}, & \alpha^{2}+\beta^{2} \geq 1 .\end{cases}
$$

By inspection

- κ^{2} is minimal on the circle $\alpha^{2}+\beta^{2}=1$
- with $\alpha \geq 0, \kappa$ is minimal for $\alpha=0, \beta=1$

Illustration: spectrum of the generalized eigenvalue problem

Illustration: spectrum of the generalized eigenvalue problem

Generalization to 3D problems is easy and gives the same results.

Spectral properties of the discretized operator

Consider

$$
M^{-1} A x=M^{-1} b
$$

M is the discretized Shifted-Laplace operator.

Introduce the splitting $A=B+k^{2} I, B$ is the Laplace component of A.

Generalized eigenvalue problem:

$$
\left(B+k^{2} I\right) p_{v}=\lambda_{v}\left(B-(\alpha+\mathbf{i} \beta) k^{2} I\right) p_{v} .
$$

Spectral properties of the discretized operator

Eigenvalues can have both positive and negative real part.
\rightarrow indefinite.
\rightarrow convergence is difficult to estimate
The normal equations formulation is used to estimate the convergence

$$
\left(M^{-1} A\right)^{*}\left(M^{-1} A\right) x=\left(M^{-1} A\right)^{*} b
$$

We consider three particular options:

$$
\begin{array}{ll}
\alpha=0, \beta=0: M_{0} & \text { Bayliss and Turkel } \\
\alpha=1, \beta=0: M_{1} & \text { Laird } \\
\alpha=0, \beta=1: M_{i} & \text { Complex }
\end{array}
$$

Eigenvalues of the various preconditioned matrices

Denote $Q=\left(M^{-1} A\right)^{*}\left(M^{-1} A\right)$ and the eigenvalues of B as

$$
0<\mu_{1} \leq \mu_{2} \cdots \leq \mu_{n} .
$$

Bayliss and Turkel $\quad \lambda_{j}\left(Q_{0}\right)=\left(1-\frac{k^{2}}{\mu_{j}}\right)^{2}$,
Laird
$\lambda_{j}\left(Q_{1}\right)=\left(1-\frac{2 k^{2}}{\mu_{j}+k^{2}}\right)^{2}$,
Complex

$$
\lambda_{j}\left(Q_{i}\right)=1-\frac{2 \mu_{j} k^{2}}{\mu_{j}^{2}+k^{4}} .
$$

Comparison of the eigenvalues for $k^{2}<\mu_{1}$

After some analysis, the following inequalities are derived:

$$
\begin{aligned}
& \lambda_{\min }\left(Q_{0}\right)>\lambda_{\min }\left(Q_{1}\right), \\
& \lambda_{\min }\left(Q_{0}\right)>\lambda_{\min }\left(Q_{i}\right),
\end{aligned}
$$

and

$$
\lim _{\mu_{n} \rightarrow \infty} \lambda_{\max }\left(Q_{0}\right)=\lim _{\mu_{n} \rightarrow \infty} \lambda_{\max }\left(Q_{1}\right)=\lim _{\mu_{n} \rightarrow \infty} \lambda_{\max }\left(Q_{i}\right)=1
$$

Conclusion
For low k, M_{0} performs better than M_{1} and M_{i}.

Eigenvalues for Bayliss and Turkel preconditioner for $\mu_{1}<k^{2}<\mu_{n}$

The smallest eigenvalue

$$
\lambda_{\min }\left(Q_{0}\right)=\frac{\epsilon^{2}}{k^{4}}
$$

and for small k

$$
\lim _{\mu_{n} \rightarrow \infty} \lambda_{n}\left(Q_{0}\right)=1 \text { and } \lim _{\mu_{1} \rightarrow 0} \lambda_{1}\left(Q_{0}\right)=\infty
$$

for large k

$$
\lim _{k \rightarrow \infty} \lambda_{\max }\left(Q_{0}\right)=\infty .
$$

Remark
There is a possible unboundedness for large k.

Eigenvalues for Laird preconditioner for $\mu_{1}<k^{2}<\mu_{n}$

The smallest eigenvalue

$$
\lambda_{\min }\left(Q_{1}\right)=\frac{\epsilon^{2}}{4 k^{4}}
$$

and

$$
\lim _{\mu_{n} \rightarrow \infty} \lambda_{n}\left(Q_{1}\right)=1, \lim _{\mu_{1} \rightarrow 0} \lambda_{1}\left(Q_{1}\right)=1, \text { and } \lim _{k \rightarrow \infty} \lambda_{\max }\left(Q_{1}\right)=1
$$

Remark
The eigenvalues are always bounded above by one, but some small eigenvalues lie very close to the origin \rightarrow the cause of slow convergence!

Eigenvalues for Complex preconditioner for $\mu_{1}<k^{2}<\mu_{n}$

The smallest eigenvalue

$$
\lambda_{\min }\left(Q_{i}\right)=\frac{\epsilon^{2}}{2 k^{4}}
$$

$$
\lim _{\mu_{n} \rightarrow \infty} \lambda_{n}\left(Q_{i}\right)=1, \lim _{\mu_{1} \rightarrow 0} \lambda_{1}\left(Q_{i}\right)=1, \text { and } \lim _{k \rightarrow \infty} \lambda_{\max }\left(Q_{i}\right)=1 .
$$

Remark
The eigenvalues are always bounded above by one. Some small eigenvalues lie very close to the origin BUT are still farther away as compared to those of M_{1}.

Conclusion

For large k, M_{i} may be better than M_{0} and M_{1}.

5. Numerical experiments

Problem 1: Example with constant k in Ω

Iterative solver: Bi-CGSTAB
Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	$\mathrm{ILU}(0.01)$	M_{0}	M_{1}	M_{i}
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	>1000	150	52

Example with constant k in Ω

Convergence behavior for $k=10$

Example with non-constant k in Ω

Three-layers problem

$$
k= \begin{cases}k_{\mathrm{ref}} & 0 \leq y \leq 1 / 3 \\ 1.5 k_{\mathrm{ref}} & 1 / 3 \leq y \leq 2 / 3 \\ 2.0 k_{\mathrm{ref}} & 2 / 3 \leq y \leq 1.0\end{cases}
$$

Example with non-constant k in Ω

Three-layers problem

CGNR					Bi-CGSTAB		
$k_{\text {ref }}$	M_{0}	M_{1}	M_{i}	M_{0}	M_{1}	M_{i}	
2	12	12	10	6	7	5	
5	39	31	23	17	15	13	
10	189	88	66	150	56	22	
15	647	175	126	685	113	40	
20	>1000	268	194	>1000	177	60	
30	>1000	502	361	>1000	344	105	

6. Conclusions

- The shifted Laplace operator leads to a new class of preconditioners for the Helmholtz equation.
- Except for $\alpha=0, \beta=0$ (Bayliss \& Turkel), the eigenvalues of the preconditioned linear system have an upperbound.
- Numerical tests show the effectiveness of the preconditioners
- For small k the Bayliss \& Turkel preconditioner is optimal.
- For large k the complex shifted Laplace preconditioner is optimal.

Further information/research

- http://ta.twi.tudelft.nl/nw/users/vuik/pub03.html
- Y.A. Erlangga and C. Vuik and C.W. Oosterlee On a class of preconditioners for solving the Helmholtz equation Delft University of Technology Department of Applied Mathematical Analysis Report 03-01
- Current research efficient solution of the systems:

$$
M_{i} s=r \text { in order to compute } s=M_{i}^{-1} r
$$

using inner-outer iteration methods.

