"Shifted Laplace" preconditioners for the Helmholtz equations

•

TUDelft

C. Vuik, Y.A. Erlangga, and C.W. Oosterlee c.vuik@math.tudelft.nl

http://ta.twi.tudelft.nl/users/vuik/

Delft University of Technology

ENUMATH 2003

The European Conference on Numerical Mathematics and Advanced Applications

August 18-22, 2003, Prague, Czech Republic

Contents

•

- 1. Introduction
- 2. Survey of solution methods
- 3. Survey of preconditioners
- 4. Properties of the "Shifted Laplace" preconditioners
- 5. Numerical experiments
- 6. Conclusions

Wim Mulder, René Edouard Plessix, Paul Urbach

Financially supported by the Dutch Ministry of Economic Affairs: project BTS01044

•

The Helmholtz problem is defined as follows

$$\Delta u + k^2 u = f$$
, in Ω ,
Boundary condition on $\Gamma = \partial \Omega$,

where:

- k = k(x, y, z) is the wavenumber
- for "solid" boundaries: Dirichlet/Neumann
- for "fictitious" boundaries: Sommerfeld $\frac{du}{dn} iku = 0$

Application: geophysical survey

hard Marmousi Model

Application: optical storage

Model for Blu-Ray disk

•

TUDelft

•

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, $O(h^2)$.

Linear system

$$Ax = b, \ A \in \mathbb{C}^{N \times N}, \ b, x \in \mathbb{C}^N,$$

•

In general: Finite Difference/Finite Element Methods.

Particular to the present case: 5-point Finite Difference stencil, $O(h^2)$.

Linear system

$$Ax = b, \ A \in \mathbb{C}^{N \times N}, \ b, x \in \mathbb{C}^N,$$

A is a sparse, highly indefinite matrix for practical values of k. Special property $A = A^T$.

For high resolution a very fine grid is required: 30 - 60 gridpoints per wavelength (or $\approx 5 - 10 \times k$) $\rightarrow A$ is extremely large!

″ ∪Delft

2. Survey of solution methods

Special Krylov methods

- COCG van der Vorst and Melissen, 1990
- QMR Freund and Nachtigal, 1991

2. Survey of solution methods

Special Krylov methods

- COCG van der Vorst and Melissen, 1990
- QMR Freund and Nachtigal, 1991

General purpose Krylov methods

- CGNR Paige and Saunders, 1975
- Short recurrences CGS Sonneveld, 1989 Bi-CGSTAB van der Vorst, 1992
- Minimal residual
 - GMRES Saad and Schultz, 1986
 - GCR Eisenstat, Elman and Schultz, 1983
 - GMRESR van der Vorst and Vuik, 1994

Equivalent linear system $M_1^{-1}AM_2^{-1}\tilde{x} = \tilde{b}$, where $M = M_1 \cdot M_2$ is the preconditioning matrix and

$$\tilde{x} = M_2 x, \quad \tilde{b} = M_1 b.$$

Requirements for a preconditioner

- better spectral properties of $M^{-1}A$
- cheap to perform $M^{-1}r$.

Spectrum of A is $\{\mu_i - k^2\}$, with k is constant and μ_i are the eigenvalues

of the Laplace operator. Note $\mu_1 - k^2$ may be negative.

″ Delft

Survey of preconditioners

ILU Meijerink and van der Vorst, 1977 ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997Multigrid Lahaye, 2001Elman, Ernst and O' Leary, 2001

Survey of preconditioners

ILU Meijerink and van der Vorst, 1977 ILU(tol) Saad, 2003

SPAI Grote and Huckle, 1997Multigrid Lahaye, 2001Elman, Ernst and O' Leary, 2001

 AILU Gander and Nataf, 2001 analytic parabolic factorization
ILU-SV Plessix and Mulder, 2003 separation of variables

Survey of preconditioners

Laplace operator Definite Helmholtz Shifted Laplace Bayliss and Turkel, 1983 Laird, 2000 Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Laplace operatorBayliss and Turkel, 1983Definite HelmholtzLaird, 2000Shifted LaplaceY.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner

$$M \equiv \Delta - (\alpha + \mathbf{i}\beta)k^2, \ \alpha, \beta \in \mathbb{R}, \text{ and } \alpha \geq 0.$$

Condition $\alpha \ge 0$ is used to ensure that M is a (semi) definite operator.

- $\rightarrow \alpha, \beta = 0$: Bayliss and Turkel
- $\rightarrow \alpha = 1, \beta = 0 \quad : \quad \text{Laird}$

4. Properties of the "Shifted Laplace" preconditioners

Motivation: continuous problem

Consider 1D Helmholtz problem with Dirichlet boundary conditions. Continuous generalized eigenvalue problem:

$$\left(\frac{d^2}{dx^2} + k^2\right)\phi_v = \lambda\left(\frac{d^2}{dx^2} - (\alpha + \mathbf{i}\beta)k^2\right)\phi_v$$

Eigenvalues:

$$\lambda_n = \frac{k_n^2 - k^2}{k_n^2 + (\alpha + \mathbf{i}\beta)k^2}, \quad k_n = n\pi, \quad n \in \mathbb{N} \setminus \{0\}$$

or, in modulus,

$$|\lambda_n|^2 = \frac{(k_n - k^2)^2}{(k_n^2 + \alpha k^2)^2 + \beta^2 k^4}.$$

Spectral properties $(\alpha^2 + \beta^2 \neq 0)$

Maximum $|\lambda|$ For finite k and $k_n \to \infty$: $|\lambda_n|^2 = 1$, and for $k \to \infty$: $|\lambda_1|^2 = \frac{1}{\alpha^2 + \beta^2}$, so

$$|\lambda_{\max}|^2 = \max\left(\frac{1}{\alpha^2 + \beta^2}, 1\right).$$

Minimum $|\lambda|$ Assume $|\lambda_{\min}| \approx 0$. This implies $k_j \approx k$, or $k_j = k + \epsilon$. Substitution leads to:

$$|\lambda_{\min}|^2 = \frac{4}{(1+\alpha)^2 + \beta^2} \left(\frac{\epsilon}{k}\right)^2.$$

Condition number

•

For $\alpha = 0$ and $\beta = 0$, condition number $\kappa^2 = \frac{k^6}{4\pi^4\epsilon^2}$.

For other values of α and β we have

$$\kappa^2 = \begin{cases} \frac{1}{4} \left(1 + \frac{1+2\alpha}{\alpha^2 + \beta^2} \right) (k/\epsilon)^2, & \alpha^2 + \beta^2 \le 1, \\ \frac{1}{4} ((1+\alpha)^2 + \beta^2) (k/\epsilon)^2, & \alpha^2 + \beta^2 \ge 1. \end{cases}$$

By inspection

- κ^2 is minimal on the circle $\alpha^2 + \beta^2 = 1$
- with $\alpha \ge 0$, κ is minimal for $\alpha = 0, \beta = 1$

Illustration: spectrum of the generalized eigenvalue problem

•

Illustration: spectrum of the generalized eigenvalue problem

Generalization to 3D problems is easy and gives the same results.

TUDelft

Spectral properties of the discretized operator

Consider

•

$$M^{-1}Ax = M^{-1}b,$$

M is the discretized Shifted-Laplace operator.

Introduce the splitting $A = B + k^2 I$, B is the Laplace component of A.

Generalized eigenvalue problem:

$$(B + k^2 I) p_v = \lambda_v (B - (\alpha + \mathbf{i}\beta)k^2 I) p_v.$$

Eigenvalues can have both positive and negative real part.

 \rightarrow indefinite.

•

 \rightarrow convergence is difficult to estimate

The normal equations formulation is used to estimate the convergence

$$(M^{-1}A)^*(M^{-1}A)x = (M^{-1}A)^*b$$

We consider three particular options:

 $\alpha = 0, \beta = 0$: M_0 Bayliss and Turkel $\alpha = 1, \beta = 0$: M_1 Laird $\alpha = 0, \beta = 1$: M_i Complex

Eigenvalues of the various preconditioned matrices

Denote $Q = (M^{-1}A)^*(M^{-1}A)$ and the eigenvalues of B as

$$0 < \mu_1 \le \mu_2 \cdots \le \mu_n.$$

Bayliss and Turkel

Laird

•

Complex

$$\begin{split} \lambda_j(Q_0) &= \left(1 - \frac{k^2}{\mu_j}\right)^2, \\ \lambda_j(Q_1) &= \left(1 - \frac{2k^2}{\mu_j + k^2}\right)^2, \\ \lambda_j(Q_i) &= 1 - \frac{2\mu_j k^2}{\mu_j^2 + k^4}. \end{split}$$

Comparison of the eigenvalues for $k^2 < \mu_1$

After some analysis, the following inequalities are derived:

 $\lambda_{\min}(Q_0) > \lambda_{\min}(Q_1),$ $\lambda_{\min}(Q_0) > \lambda_{\min}(Q_i),$

and

•

$$\lim_{\mu_n \to \infty} \lambda_{\max}(Q_0) = \lim_{\mu_n \to \infty} \lambda_{\max}(Q_1) = \lim_{\mu_n \to \infty} \lambda_{\max}(Q_i) = 1$$

Conclusion

For low k, M_0 performs better than M_1 and M_i .

TUDelft

Eigenvalues for Bayliss and Turkel preconditioner for $\mu_1 < k^2 < \mu_n$

The smallest eigenvalue

$$\lambda_{\min}(Q_0) = \frac{\epsilon^2}{k^4}$$

and for small k

$$\lim_{\mu_n \to \infty} \lambda_n(Q_0) = 1 \text{ and } \lim_{\mu_1 \to 0} \lambda_1(Q_0) = \infty$$

for large k

$$\lim_{k \to \infty} \lambda_{\max}(Q_0) = \infty.$$

Remark

There is a possible unboundedness for large k.

Eigenvalues for Laird preconditioner for $\mu_1 < k^2 < \mu_n$

The smallest eigenvalue

$$\lambda_{\min}(Q_1) = \frac{\epsilon^2}{4k^4}$$

and

•

$$\lim_{\mu_n \to \infty} \lambda_n(Q_1) = 1, \lim_{\mu_1 \to 0} \lambda_1(Q_1) = 1, \text{ and } \lim_{k \to \infty} \lambda_{\max}(Q_1) = 1.$$

Remark

The eigenvalues are always bounded above by one, but some small eigenvalues lie very close to the origin \rightarrow the cause of slow convergence!

Eigenvalues for Complex preconditioner for $\mu_1 < k^2 < \mu_n$

The smallest eigenvalue

$$\lambda_{\min}(Q_i) = \frac{\epsilon^2}{2k^4}$$

$$\lim_{\mu_n \to \infty} \lambda_n(Q_i) = 1, \lim_{\mu_1 \to 0} \lambda_1(Q_i) = 1, \text{ and } \lim_{k \to \infty} \lambda_{\max}(Q_i) = 1.$$

Remark

•

The eigenvalues are always bounded above by one. Some small eigenvalues lie very close to the origin **BUT** are still farther away as compared to those of M_1 .

Conclusion For large k, M_i may be better than M_0 and M_1 .

TUDelft

Problem 1: Example with constant k in Ω

Iterative solver: Bi-CGSTAB

Preconditioner: Shifted-Laplace operator, discretized using the same method as the Helmholtz operator.

k	ILU(0.01)	M_0	M_1	M_i
5	9	13	13	13
10	25	29	28	22
15	47	114	45	26
20	82	354	85	34
30	139	> 1000	150	52

Example with constant k in Ω

Convergence behavior for k = 10

TUDelft

•

Example with non-constant k in Ω

Three-layers problem

$$k = \begin{cases} k_{\text{ref}} & 0 \le y \le 1/3, \\ 1.5k_{\text{ref}} & 1/3 \le y \le 2/3, \\ 2.0k_{\text{ref}} & 2/3 \le y \le 1.0. \end{cases}$$

•

C. Vuik, August 19, 2003 24 - p.24/2

TUDelft

Example with non-constant k in Ω

Three-layers problem										
	CGNR			Bi-CGSTAB						
k_{ref}	M_0	M_1	M_i	M_0	M_1	M_i				
2	12	12	10	6	7	5				
5	39	31	23	17	15	13				
10	189	88	66	150	56	22				
15	647	175	126	685	113	40				
20	>1000	268	194	>1000	177	60				
30	>1000	502	361	>1000	344	105				

•

•

6. Conclusions

- The shifted Laplace operator leads to a new class of preconditioners for the Helmholtz equation.
- Except for $\alpha = 0, \beta = 0$ (Bayliss & Turkel), the eigenvalues of the preconditioned linear system have an upperbound.
- Numerical tests show the effectiveness of the preconditioners
- For small *k* the Bayliss & Turkel preconditioner is optimal.
- For large k the complex shifted Laplace preconditioner is optimal.

Further information/research

•

TUDelft

- http://ta.twi.tudelft.nl/nw/users/vuik/pub03.html
- Y.A. Erlangga and C. Vuik and C.W. Oosterlee On a class of preconditioners for solving the Helmholtz equation Delft University of Technology Department of Applied Mathematical Analysis Report 03-01
- Current research efficient solution of the systems:

 $M_i s = r$ in order to compute $s = M_i^{-1} r$

using inner-outer iteration methods.