Analysis of the multi-level, shifted Laplace preconditioned method for the Helmholtz equation

ESF OPTPDE Workshop: Fast Solvers for Simulation, Inversion, andControl of Wave Propagation ProblemsC. Vuik, A.H. Sheikh, D. Lahaye, H. Knibbe, and C.W. Oosterlee27 September 2011

Delft University of Technology

1

Delft Institute of Applied Mathematics

Contents

- Introduction
- Preconditioning
- Second-level preconditioning (Deflation)
- Fourier Analysis of two-level method
- Numerical experiments
- Implementation on Multiple GPU's
- Conclusions

The Helmholtz equation

The Helmholtz equation without damping

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$

 $\mathbf{u}(x, y)$ is the pressure field, $\mathbf{k}(x, y)$ is the wave number, $\mathbf{g}(x, y)$ is the point source function and Ω is domain bounded by Absorbing boundary conditions

 $\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$

n is normal direction to respective boundary.

Problem description

• Second order Finite difference stencil:

$$-1$$

 -1 $4 - k^2 h^2$ -1
 -1

- Linear system Au = g: properties
 Sparse & complex valued
 Symmetric & Indefinite for large k
- Is traditionally solved by Krylov methods, which exploit sparsity.

Preconditioning

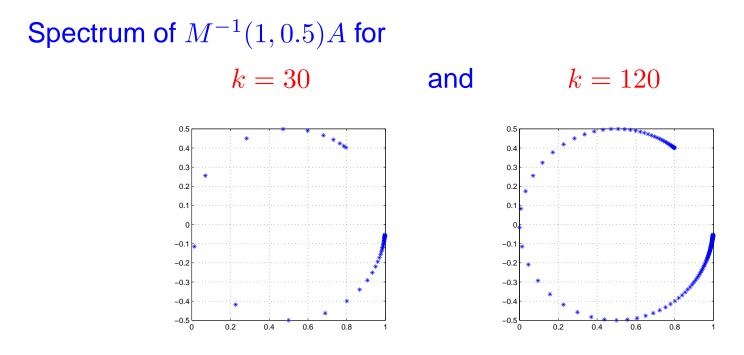
- ILU and variants
- From Laplace to complex shifted Laplace preconditioner (2005)
- Shifted Laplace preconditioner (SLP)

$$M := -\Delta \mathbf{u} - (\beta_1 - \iota \beta_2) k^2 \mathbf{u}$$

- Results shows $(\beta_1, \beta_2) = (1, 0.5)$ is the optimal shift
- What does SLP do?

Shifted Laplace Preconditioner

- Introduces damping, Multigrid approximation
- Norm of spectrum of preconditioned operator bounded above by 1
- Spectrum goes to zero, as *k* increases.



27 September 2011

Delft Institute of Applied Mathematics

Delft

Some Restuls at a Glance

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	10	17	28	44	70	13/14
n = 64	10	17	28	36	45	173/163
n = 96	10	17	27	35	43	36/97
n = 128	10	17	27	35	43	36/85
n = 160	10	17	27	35	43	25/82
n = 320	10	17	27	35	42	80

27 September 2011

Delft Institute of Applied Mathematics

Deflation improves!!!

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

Erlangga and Nabben, 2008

with / without deflation.

27 September 2011

Deflation: Definiton

For any deflation deflation subspace matrix

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, rankZ = r

$$P = I - AQ$$
, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

Solve PAu = Pg preconditioned by M^{-1} or $M^{-1}PA = M^{-1}Pg$ For e.g. say,

$$\operatorname{spec}(A) = \{\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n\}$$

and if Z is matrix with columns as the r eigenvectors then

$$spec(PA) = \{0, ..., 0, \lambda_{r+1}, ...\lambda_n\}$$

We use multigrid inter-grid transfer operator (Prolongation) as deflation matrix.

27 September 2011

Delft Institute of Applied Mathematics

Deflation

Setting $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

P = I - AQ, with $Q = I_h^{2h} E^{-1} I_{2h}^h$ and $E = I_{2h}^h A I_h^{2h}$

where

- P can be read as coarse grid correction and
- *Q* the coarse grid operator

Dirichlet boundary conditions for analysis. With above deflation,

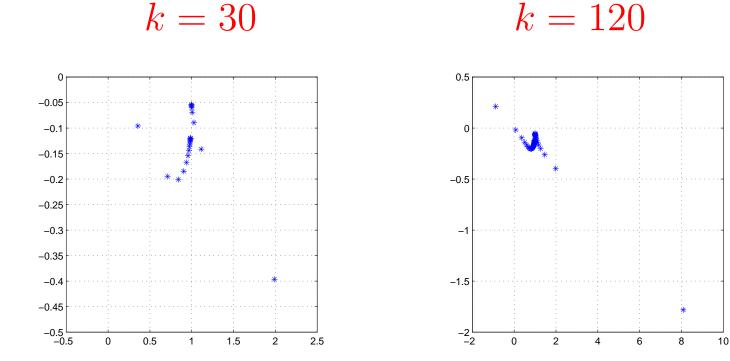
 $\operatorname{spec}(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$

is a complex valued function.

Setting kh = 0.625,

- The non-zero eigenvalues of $PM^{-1}A$ near zero are wrapped and clustered around 1 with a few outliers.
- Spectrum remains almost the same, when imaginary shift is varied from 0.5 to 1.

Analysis shows spectrum clustered around 1 with few outliers.

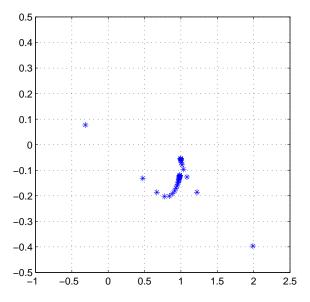


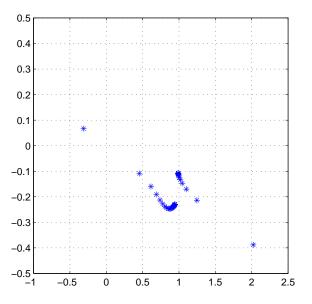
Delft Institute of Applied Mathematics

Analysis tells increase in imaginary shift does not change spectrum.

 $(\beta_1, \beta_2) = (1, 0.5)$

 $(\beta_1,\beta_2)=(1,1)$



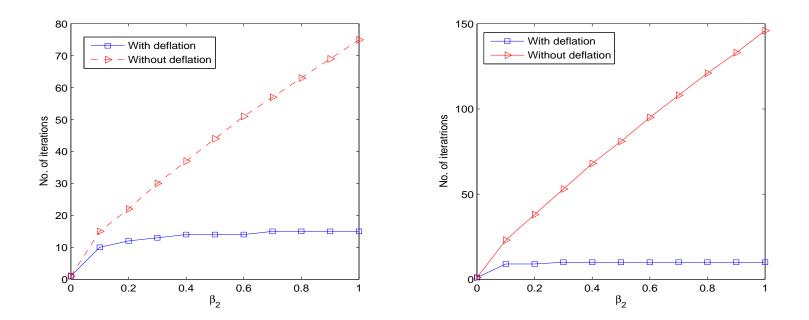


Delft Institute of Applied Mathematics

Sommerfeld boundary conditions are used for test problem. Increase in imaginary shift in SLP?

Constant wavenumber problem

Wedge problem



27 September 2011

A

TUDelft

Number of GMRES iterations with/without deflation. Shift in preconditioner is (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

Number of GMRES iterations with/without deflation to solve a Wedge problem. Shift in preconditioner is (1, 0.5)

Grid	freq = 10	freq = 20	freq = 30	freq = 40	freq = 50
74×124	7/33	20/60	79/95	267/156	490/292
148×248	5/33	9/57	17/83	42/112	105/144
232×386	5/33	7/57	10/81	25/108	18/129
300×500	4/33	6/57	8/81	12/105	18/129
374×624	4/33	5/57	7/80	9/104	13/128

TUDelft

K

27 September 2011

Delft Institute of Applied Mathematics

Number of GMRES outer-iterations in multilevel algorithm. $(\beta_1, \beta_2) = (1, 0.5) \ kh = .3125 \text{ or } 20 \text{ gp/wl} \text{ and MG Vcycle(1,1) for SLP}$

Grid	k = 10	k = 20	k = 40	k = 80	k = 160
MLMGV(4,2,1)	9	11	16	27	100+
MLMGV(6,2,1)	9	10	14	21	47
MLMGV(8,2,1)	9	10	13	20	38
MLMGV(8,3,2)	9	10	13	19	37

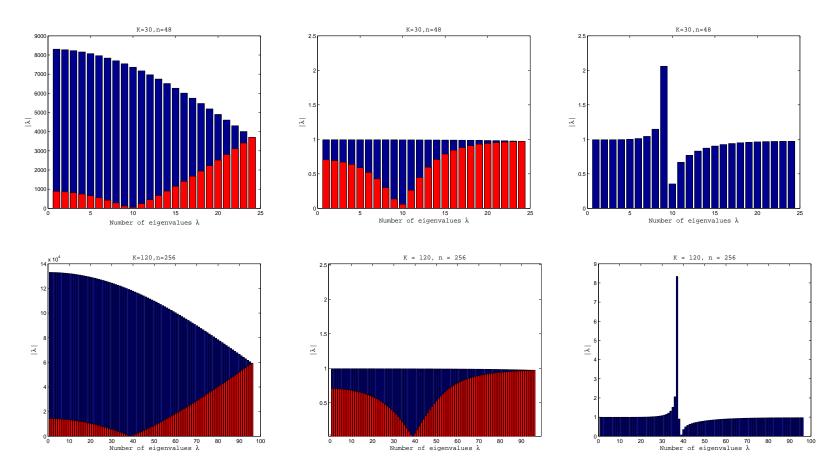
TUDelft

K

27 September 2011

Delft Institute of Applied Mathematics

Spectrum of A, $M^{-1}A$ and $PM^{-1}A$ (from left to right) in bar-graph.



Delft Institute of Applied Mathematics

27 September 2011

18

Implementation on Multiple GPU's

Bi-CGSTAB preconditioned by shifted Laplace multigrid method. Equation solved in preconditioner is

$$-\frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial y^2} - \frac{\partial^2 \phi}{\partial z^2} - (\beta_1 - \beta_2 i)k^2 \phi = g, \tag{1}$$

 $\beta_1, \beta_2 \in \mathbb{R}$, with the same boundary conditions as the original problem. Multigrid components:

- Matrix-dependent prolongation (2D: de Zeeuw, 1990, 3D: Zhebel, 2006)
- Standard restriction
- Multi-coloured Gauss-Seidel as a smoother

Preconditioner is computed in single precision.

27 September 2011

Little-Green Machine

27 September 2011

20

Delft Institute of Applied Mathematics

Little-Green Machine

20 general computing nodes

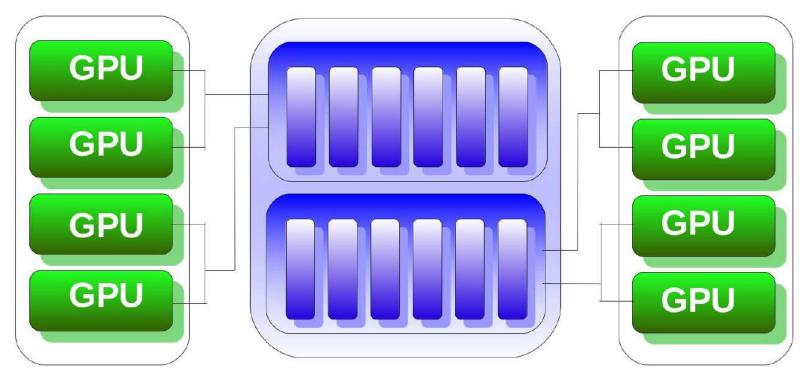
- 2 Intel quadcore E5620
- 24 GB RAM
- 2 TB disk
- 2 NVIDIA GTX480
- Funded by
 - University of Leiden
 - NWO project number 612.071.305
 - TU Delft (DCSE www.cse.tudelft.nl)
 - KNMI

21

27 September 2011

NVidia Computer

8 GPUs, each GPU has 448 cores, 3 GB RAM 12 cores (2 Westmeres), 48 GB RAM



Gauss-Seidel Smoother

Four color Gauss-Seidel

Size	Time 8-cores (ms)	Time GPU (ms)	CPU/GPU
10,000	4	0.6	7
100,000	23.4	0.8	29
1,000,000	164.5	2.5	66
5,000,000	625.9	10.3	61
20,000,000	3733.9	39.4	95

27 September 2011

Delft Institute of Applied Mathematics

Multi-GPU Approach

- 1. Data-parallel approach (e.g. vector operations on multi-GPU)
 - (a) Relatively easy to implement
 - (b) $CPU \rightarrow GPU \rightarrow CPU$ data transfer
- 2. Split of the algorithm (e.g. solver on one GPU, preconditioner on the another one)
 - (a) No or little data transfers
 - (b) Find the best way to split the algorithm
- 3. Domain-Decomposition approach (e.g. each domain on a different GPU)
 - (a) Exchange of halos (still data transfer)
 - (b) Can affect convergence of the preconditioned method

Multi-GPU Issues

- Limited GPU memory size so need multiple GPUs for large problems.
- Efficient memory reusage to avoid allocation/deallocation, e.g. pool of GPU-vectors.
- Limit communications CPU \rightarrow GPU and GPU \rightarrow CPU.
- Each GPU need separate texture reference.
- Cublas vectors limited to 512 MB.

Bi-CGSTAB

Timings for Bi-CGSTAB, single precision

n	12-cores	1 GPU	Speedup	8-GPU	Speedup
5,000,000	24 s	0.8 s	29.8	2.3 s	10.5
15,000,000	82 s	2 s	38.1	5.8 s	14.2
100,000,000	395 s	-	-	28.6 s	13.8

27 September 2011

Bi-CGSTAB with SLP and multigrid

Wedge problem, size $350 \times 350 \times 350 \approx 43,000,000$ unknowns

	Bi-CGSTAB (DP)	Preconditioner (SP)	Total
12-cores	94 s	690 s	784 s
1 GPU	13 s	47 s	60 s
Speedup CPU/GPU	7.2	14.7	13.1
8 GPUs	83 s	86 s	169 s
Speedup CPU/GPUs	1.1	7.9	4.6
2 GPUs+split	12 s	38 s	50 s
Speedup CPU/GPU	7.8	18.2	15.5
27 September 2011			27
Dalft Institute of Applied Math	omotion	<u>r</u>	

TUDelft

Delft Institute of Applied Mathematics

Conclusions

- The two grid method is parameter independent
- Numerical results confirm analysis
- Flexibility to increase imaginary shift, when deflation is combined with SLP.
- Further research Multilevel scheme, applying similar algorithm for coarse problem in deflation, does not behave similarly, so not scalable in amount of work
- Multiple GPU's can be used to solve realistic problems with a decrease of wall clock time of a factor 10-20

References

- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- M.B. van Gijzen, Y.a. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned withe a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- J.M. Tang. Two level preconditioned Congugate Gradient methods with applications to bubbly flow problems. PhD Thesis, DIAM TU Delft 2008.
- A.H. Sheikh, D. Lahaye and C. Vuik. A scalable Helmholtz solver combining the shifted Laplace preconditioner with multigrid deflation. submitted
- U. Trottenberg, C.W. Oosterlee and A. Schuller. Multigrid. Academic Press London 2000.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multigrid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011

A.

27 September 2011

Thank You for Your Attention

27 September 2011

Delft Institute of Applied Mathematics