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The Helmholtz equation

The Helmholtz equation without damping

−∆u(x, y) − k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,
k(x, y) is the wave number,
g(x, y) is the point source function and
Ω is domain bounded by Absorbing boundary conditions

∂u

∂n
− ιu = 0

n is normal direction to respective boundary.
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Problem description
• Second order Finite difference stencil:









−1

−1 4 − k2h2 −1
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• Linear system Au = g: properties
Sparse & complex valued
Symmetric & Indefinite for large k

• Is traditionally solved by Krylov methods, which exploit sparsity.



27 September 2011 5

Delft Institute of Applied Mathematics

Preconditioning
• ILU and variants

• From Laplace to complex shifted Laplace preconditioner (2005)

• Shifted Laplace preconditioner (SLP)

M := −∆u − (β1 − ιβ2)k
2
u

• Results shows (β1, β2) = (1, 0.5) is the optimal shift

• What does SLP do?
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Shifted Laplace Preconditioner
• Introduces damping, Multigrid approximation

• Norm of spectrum of preconditioned operator bounded above by 1

• Spectrum goes to zero, as k increases.

Spectrum of M−1(1, 0.5)A for

k = 30 and k = 120
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Some Restuls at a Glance

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 10 17 28 44 70 13/14

n = 64 10 17 28 36 45 173/163

n = 96 10 17 27 35 43 36/97

n = 128 10 17 27 35 43 36/85

n = 160 10 17 27 35 43 25/82

n = 320 10 17 27 35 42 80
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Deflation improves!!!

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Erlangga and Nabben, 2008

with / without deflation.
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Deflation: Definiton

For any deflation deflation subspace matrix

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rankZ = r

P = I − AQ, with Q = ZE−1ZT andE = ZT AZ

Solve PAu = Pg preconditioned by M−1 or M−1PA = M−1Pg

For e.g. say,

spec (A) = {λ1, λ2, λ3, ..., λn}

and if Z is matrix with columns as the r eigenvectors then

spec (PA) = {0, ..., 0, λr+1, ...λn}

We use multigrid inter-grid transfer operator (Prolongati on) as deflation matrix.
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Deflation

Setting Z = I2h

h
and ZT = Ih

2h
then

P = I − AQ, with Q = I2h

h
E−1Ih

2h
andE = Ih

2h
AI2h

h

where
P can be read as coarse grid correction and
Q the coarse grid operator
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Fourier Analysis

Dirichlet boundary conditions for analysis.
With above deflation,

spec (PM−1A) = f(β1, β2, k, h)

is a complex valued function.
Setting kh = 0.625,

• The non-zero eigenvalues of PM−1A near zero are wrapped and
clustered around 1 with a few outliers.

• Spectrum remains almost the same, when imaginary shift is
varied from 0.5 to 1.
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Fourier Analysis

Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Analysis tells increase in imaginary shift does not change spectrum.

(β1, β2) = (1, 0.5) (β1, β2) = (1, 1)
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Numerical results

Sommerfeld boundary conditions are used for test problem.

Increase in imaginary shift in SLP?

Constant wavenumber problem Wedge problem

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

β
2

N
o.

 o
f i

te
ra

tio
ns

 

 

With deflation
Without deflation

0 0.2 0.4 0.6 0.8 1
0

50

100

150

β
2

N
o.

 o
f i

te
ra

tri
on

s

 

 

With deflation
Without deflation



27 September 2011 15

Delft Institute of Applied Mathematics

Numerical results

Number of GMRES iterations with/without deflation. Shift in
preconditioner is (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80
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Numerical results

Number of GMRES iterations with/without deflation to solve a Wedge
problem. Shift in preconditioner is (1, 0.5)

Grid freq = 10 freq = 20 freq = 30 freq = 40 freq = 50

74× 124 7/33 20/60 79/95 267/156 490/292

148× 248 5/33 9/57 17/83 42/112 105/144

232× 386 5/33 7/57 10/81 25/108 18/129

300× 500 4/33 6/57 8/81 12/105 18/129

374× 624 4/33 5/57 7/80 9/104 13/128
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Numerical results

Number of GMRES outer-iterations in multilevel algorithm.
(β1, β2) = (1, 0.5) kh = .3125 or 20 gp/wl and MG Vcycle(1,1) for SLP

Grid k = 10 k = 20 k = 40 k = 80 k = 160

MLMGV(4,2,1) 9 11 16 27 100+

MLMGV(6,2,1) 9 10 14 21 47

MLMGV(8,2,1) 9 10 13 20 38

MLMGV(8,3,2) 9 10 13 19 37
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Fourier Analysis
Spectrum of A, M−1A and PM−1A (from left to right) in bar-graph.
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Implementation on Multiple GPU’s

Bi-CGSTAB preconditioned by shifted Laplace multigrid method.
Equation solved in preconditioner is

−
∂2φ

∂x2
−

∂2φ

∂y2
−

∂2φ

∂z2
− (β1 − β2i)k

2φ = g, (1)

β1, β2 ∈ R, with the same boundary conditions as the original problem.
Multigrid components:

•• Matrix-dependent prolongation (2D: de Zeeuw, 1990, 3D: Zhebel,
2006)

• Standard restriction

• Multi-coloured Gauss-Seidel as a smoother

Preconditioner is computed in single precision.
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Little-Green Machine
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Little-Green Machine

20 general computing nodes

• 2 Intel quadcore E5620

• 24 GB RAM

• 2 TB disk

• 2 NVIDIA GTX480

Funded by

• University of Leiden

• NWO project number 612.071.305

• TU Delft (DCSE www.cse.tudelft.nl )

• KNMI
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NVidia Computer

8 GPUs, each GPU has 448 cores, 3 GB RAM
12 cores (2 Westmeres), 48 GB RAM
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Gauss-Seidel Smoother

Four color Gauss-Seidel

Size Time 8-cores (ms) Time GPU (ms) CPU/GPU

10,000 4 0.6 7

100,000 23.4 0.8 29

1,000,000 164.5 2.5 66

5,000,000 625.9 10.3 61

20,000,000 3733.9 39.4 95
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Multi-GPU Approach

1. Data-parallel approach (e.g. vector operations on multi-GPU)

(a) Relatively easy to implement

(b) CPU→GPU→CPU data transfer

2. Split of the algorithm (e.g. solver on one GPU, preconditioner on
the another one)

(a) No or little data transfers

(b) Find the best way to split the algorithm

3. Domain-Decomposition approach (e.g. each domain on a different
GPU)

(a) Exchange of halos (still data transfer)

(b) Can affect convergence of the preconditioned method
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Multi-GPU Issues
• Limited GPU memory size so need multiple GPUs for large

problems.

• Efficient memory reusage to avoid allocation/deallocation, e.g.
pool of GPU-vectors.

• Limit communications CPU→GPU and GPU→CPU.

• Each GPU need separate texture reference.

• Cublas vectors limited to 512 MB.
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Bi-CGSTAB

Timings for Bi-CGSTAB, single precision

n 12-cores 1 GPU Speedup 8-GPU Speedup

5,000,000 24 s 0.8 s 29.8 2.3 s 10.5

15,000,000 82 s 2 s 38.1 5.8 s 14.2

100,000,000 395 s - - 28.6 s 13.8



27 September 2011 27

Delft Institute of Applied Mathematics

Bi-CGSTAB with SLP and multigrid

Wedge problem, size 350 × 350 × 350 ≈ 43, 000, 000 unknowns

Bi-CGSTAB (DP) Preconditioner (SP) Total

12-cores 94 s 690 s 784 s

1 GPU 13 s 47 s 60 s

Speedup CPU/GPU 7.2 14.7 13.1

8 GPUs 83 s 86 s 169 s

Speedup CPU/GPUs 1.1 7.9 4.6

2 GPUs+split 12 s 38 s 50 s

Speedup CPU/GPU 7.8 18.2 15.5
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Conclusions
• The two grid method is parameter independent

• Numerical results confirm analysis

• Flexibility to increase imaginary shift, when deflation is combined
with SLP.

• Further research Multilevel scheme, applying similar algorithm for
coarse problem in deflation, does not behave similarly, so not
scalable in amount of work

• Multiple GPU’s can be used to solve realistic problems with a
decrease of wall clock time of a factor 10-20
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Thank You for Your Attention
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