Acceleration of Turbomachinery steady CFD Simulations on GPU

Mohamed H. Aissa^{1,2} Dr. Tom Verstraete¹ Prof. Cornelis Vuik²

¹ Turbomachinery Department , Von Karman Institute, Belgium

² Delft Institute of Applied Mathematics, TU Delft, the Netherlands

Unconventional HPC, EuroPar 2016 WS Grenoble, 23.08.2016

Topic of Interest: Reduce Fuel Consumption and CO₂ Emission

Wikipedia.org

Turbomachinery is about Performance and Efficiency

Axial Jet Engine

Content

- Multidisciplinary Optimization
- CFD simulations on GPU
 - Literature review
 - Implicit RANS Implementation
 - Benchmark
- Optimization Case

Optimization algorithm

Optimization algorithm

Derivative-based optimization	Derivative free methods: e.g. Population based
 fast convergence but derivative evaluation could be complicated and problem specific (adjoint, automatic differentiation) 	 Simplicity Black box approach of the evaluation but Large number of evaluations
$ \min_{\substack{subject \ to \\ g(x) \le 0}} 0.5 $	

 $-0.5 \stackrel{\texttt{l}}{-2}$

0

x

1

y

0

CFD: Core of the Optimization

CFD much slower than CSM Need for acceleration -> GPU

Steady CFD Simulations

- Simulation with a unique solution for given boundary Conditions.
- A start solution is advanced iteratively in time until convergence

Steady CFD Simulations

- Simulation with a unique solution for given boundary Conditions.
- A start solution is advanced iteratively in time until convergence

Numerical Scheme:

$$\frac{\partial}{\partial t} \int_{\Omega} \boldsymbol{W} d\Omega + \oint_{\partial \Omega} (\boldsymbol{F_c} - \boldsymbol{F_v}) dS = \int_{\Omega} \boldsymbol{Q} d\Omega \quad \boldsymbol{W} = \{\rho, \rho V_x, \rho V_y, \rho V_z, \rho E\}$$

$$\frac{(\Omega M)_I}{\Delta t_I} \Delta \vec{W}_I^n = -\beta \vec{R}_I^{(n+1)} - (1-\beta) \vec{R}_I^n$$

Explicit Time Stepping (
$$\beta$$
=0):

Implicit Time Stepping (β =1):

$$\vec{R}_{I}^{n+1} \approx \vec{R}_{I}^{n} + \left(\frac{\delta \vec{R}}{\delta \vec{W}}\right)_{I} \Delta \vec{W}^{n}$$

$$\Delta \mathbf{W}^n = -\frac{\Delta t}{\Omega} \mathbf{R}^n \qquad \qquad \left[\frac{(\Omega I)}{\Delta t} + \left(\frac{\delta \mathbf{R}}{\delta \mathbf{W}}\right)\right] \Delta \mathbf{W}^n = -\mathbf{R}^n$$

Aissa, M.H., Verstraete, T., Vuik, C. "Aerodynamic Optimization of Supersonic Compressor Cascade using Differential Evolution on GPU". 13th Int. Conf. of Numerical Analysis and Applied Mathematics (ICNAAM 2015)

Implicit Time Stepping is more Stable but ...

 $M^{-1}Ax = M^{-1}b$

Literature Review

- What to Port
 - only linear solver when it is dominant
 - both assembly and solve is optimal (no communication)
- Linear solver
 - Library : code maturity but restrictive (petsc-dev, Paralution, AmgX, ViennaCL ...)
 - Own code: flexibility
- Storage format
 - Standard (CSR,DIA ...)
 - New (hybrid)

CFD Solver (Standard)

CFD Solver (On-demand Factorization)

CFD Solver (On-demand Factorization)

$$r = Ax - b$$

Stop condition relative, absolute or a combination

 $\frac{||r_k||}{||b||} < \tau_3 \qquad \quad ||r_k|| < \tau_2$

Benchmark: Flow around LS89 2-Stages Runge-Kutta

Mesh	N_{Cells}	N_{Rows}	nnz	nnz/row
Coarse	40k	200k	5.7M	[20 30]
Fine	300k	1500k	52.6M	[20 35]

Assembly Acceleration

Linear Solver Acceleration

- Assembly speedup
- Linear solve speedup
- Global speedup

Global Acceleration

- Linear solve speedup
- Global speedup

Suggestion for better Performance assessment are very welcome!

Increase of the Speedup for higher Numbers of Runge-Kutta Stages on Fine Mesh

Content

- Multidisciplinary Optimization
- CFD simulations on GPU
 - Literature review
 - Implicit RANS Implementation
 - Benchmark
- Optimization Case

Test Case 3: TU Berlin TurboLab Stator Optimization requirements

Objectives:

- Decrease outfow axial deviation
- Decrease total pressure loss

Considering 3 operating points

TurboLab Manufacturing Constraints

- N_{blades}= 15
- Chord length fixed

• Casing fixture

TurboLab: Boundary conditions and summary

Inlet P₀: 102713.0 Pa Inlet T₀: 294.314 K 9 kg/s +/- 0.1 Massflow imposed P₂ adapted

Objectives:

- Decrease outfow axial deviation
- Decrease total pressure loss

Considering 3 operating points

Inlet whirl angle: 42° Inlet pitch angle: 0°

Parametrization 21 Design variables

Turbolab Parameterization

Optimization Results

Optimized Blade

Baseline Vs Optimized

Isentropic Mach Number at mid-span

Conclusion

- Optimization
- GPU Solver with implicit time stepping
- On-demand (incomplete) Factorization
- 10x speedup
- Aerodynamic shape optimization

Future Work

Benchmark Case: Transonic Turbine Stator T106c

Thanks for your attention

Mohamed Hassanine Aissa

Turbomachinery & Propulsion Department 72, chaussee de Waterloo B1640 - Rhode Saint Genese - **Belgium** Email: **aissa@vki.ac.be**

acknowledgements:

