Fast GPU Preconditioning for Fluid
Simulations in Film Production

Dan Bailey

double negative visual effects

Computation
e Fluid

Acceleration :
Dynamics

Film
Production

double negative visual effects

Complex algorithms to implement
Hard working with lots of data

Tricky to debug code running in parallel
GPU results different to CPU results

Less willing to trial new technology
Focus is always on completing shots

double negative visual effects

Squirt

Proprietary Fluid Solver
Stable Production Tool

Highly Directable

Slow to Simulate Large Shots

double negative visual effects

Inception Sorcerer’s Apprentice

Temp Final Temp Final
Delivery Delivery Delivery Delivery

double negative visual effects

Siggraph 2009 - New Orleans

= e
4‘5&*’_

LR - :ﬁk ._'-.-;:j
‘ - o
‘.-.i [é » 3“1' B
o, -:_-; = = wuad ik
' fféi‘-f =

- d

* Directable, high-resolution
simulation of fire on the GPU

(Horvath, Geiger - ILM)

* Sprite Rendering and Particle
Simulation (Disney)

* Splat - Sprite Rendering
(Sony Picture Imageworks)

e V-Ray, OptiX, OpenCL, etc...

double negative visual effects

—
7y
.
-
O
L -
R
)
E
|_
C
O
=
=
I
Yy Ay oy & W
& R @ &P
& S

double negative visual effects

Navier Stokes Equations:

momentum equation
e

du |
|) e S . 2
(1) A7 (u V)u pr-l—vV u—+ f

2 V-u=0

incompressibility condition

Aim for a divergence-free velocity field

double negative visual effects

Values are put into a pressure Poisson equation

Can be solved iteratively using a Poisson solver

double negative visual effects

Adiag Ai Aj Ak X
A X = b
:
Ai array —
Aj array
Ak array

Matrices and vectors stored in 3D arrays
Iteratively solve using conjugate gradients
Minimise Ax-b =0

Stop at specified residual tolerance

The max() and dot() operations are trivial:

rdot(s, z) = s[0] * z[0] + ﬁ
s[1] * z[1] +

ﬁ

multiplication performed into temp array

Then use reductions for sum and max

(See NVidia SDK for reduction examples)

double negative visual effects

R
Il

r:

X

(r, r)
0O: end

0:10000
S

/ dot(s, 2)
r - az

>4 Gy Z

1f max(r) < tolerance: end

= dot(r, r)
/

S + r

double negative visual effects

0:10000

Hardest part to optimise AS

p / dot(s, z)

r - oz
X + 0z
if max(r) < tolerance: end
p* = dot(r, r)
B=p*x/p
s = fBs + r
P p*

double negative visual effects

z(i, j, k) = Adiag(i, j, k) * s(i, j, k) +
Ai(i, J, k) * s(1 + 1, J, k) +
Aj(1, J, k) * s(1i, J + 1, k) +
Ak(i, J, k) * s(i, J, k + 1) +
Ai(r -1, 3, k) *# s(1 -1, 3, k) +
Hj(ir j - lr k) = S(ir j - lr k) "
Ak(i, J, k - 1) * s(i, J, k - 1);

ﬁ

repeated, uncoalesced
global memory access

e Algorithms based around grids use neighbouring values heavily

e Computation is very simple, so kernels heavily limited by memory bandwidth

e Essential to make use of coalescing to get data out of global memory faster

e Block size is actually 8 x 8 x 4 (and 8 x 8 x 8 on Fermi)

* Domains padded with empty memory regions to ensure domain widths
are a multiple of the block size

~Nd | A

double negative visual effects

Shared Memory

e Each block pulled from global memory to shared memory in one
coalesced read which is really fast

+ BW" B H double negative visual effects

Shared Memory

* Values read from shared memory using consistent relative offsets
* Offsets can be calculated at compile time as our block size is fixed

* Slices of neighbouring blocks also need to be pulled into shared memory

double negative visual effects

The process involved in using “blocked” kernels:

[Get tile (i, , k) values }

Get tile (i, j, k) values } | N

double negative visual effects

< tilexXx = 8
& tileY = 8
”~ threadIdx.x tileZ = 8

4 K
int k = threadIdx.x / tileX.tileY;
int j (threadIdx.x - k.tileX.tileY) / tileX;

int i threadIdx.x - k.tileX.tileY - j.tileX;

[Get block (i, j, k) values J

Get block (i, j, k) values } B

double negative visual effects

< bx = (# blocks in x)

2. by = (# blocks in y)

#7 blockIdx.x bz = (# blocks in z)
‘4 P>

int k = blockIdx.x / bx.by;
int j = (blockIdx.x - k.bx.by) / bx;
int i = blockIdx.x - k.bx.by - j.bx;

[Calculate relative indices (ijk, iMjk, iPjk, ...) J

Calculate relative indices (ijk, iMjk, iPjk, ...) J N e

double negative visual effects

Modify offsets for block boundaries J

Modify offsets for block boundaries } |

double negative visual effects

[Load global memory into shared memory J

Load global memory into shared memory] |

double negative visual effects

[Load block boundaries into shared memory J

{ Load block boundaries into shared memory J |

[__syncthreads() J

__syncthreads() J B |

double negative visual effects

[Multiply texture memory with shared memory J

[Multiply texture memory with shared memory J B |

—

double negative visual effects

‘-. — < — .

—
.

!

2
4
E

g

[Save result back to global memory J

double negative visual effects

* Only need to calculate blocks containing fluid cells

* Highly effective optimisation

double negative visual effects

GPU Memory Regions

coalescing

Temporary Arrays —}[Global Memory]—}

Input Arrays —}[Texture Memory]

Block Cache —}[Constant Memory]

Residual Tolerance (log scale)

84

double negative visual effects

525

Iterations

BN No Preconditioner
BN Modified Incomplete Cholesky

H
Il
O

double negative visual effects

p = dot(r, r)

1f p == 0: end
S = Z
for 1 = 0:10000
Zz = As
a = p / dot(s, 2z)
r = r - 0z
X = X + 02z

1f max(r) < tolerance: end
z* = apply preconditioner(r, C) <
p* = dot(z*, r)
B=px /p

s = PBs +

p = p*

Blocked kernels are crucial
when applying a preconditioner

double negative visual effects

Preconditioners
Jacobi - trivial to implement, but very ineffective

Factorisation:

Incomplete Cholesky (IC)

very robust, but notoriously hard to parallelise
Incomplete LU (ILU)

Approximate |nverse:
SParse Approximate Inverse (SPAI)

Factorised Sparse Approximate Inverse (FSAI) | less effective, but more natural parallelism
Approximate INVerse (AINV)

Residual Tolerance (log scale)

84

\\ N , _.IIII."-IVI|I

"Wy, \ MW\ X qu\{lﬂ[\\h M-WJMHMW“M_MM“
\/\/\“\ A\

316

-
g,
"I'__.
e

s
e

double negative visual effects

525

Iterations

BN No Preconditioner
BN Modified Incomplete Cholesky

BN AINV

double negative visual effects

AINYV Algorithm

e Outer-product form constructs an A-conjugate set of vectors from the standard basis
e FSAI potentially better as formulation done in parallel, but more complicated to implement

e Traditional approach is to use a drop tolerance or “postfiltration” process

z(1, J, k) =

wild sp b 9],) 9@ ek, o), Le) ek
r(il’ j + ll’ k} E cj(il’ jl" k) +
r(i, j, k + 1) * ck(i, j, k) +
r(i, j, k) * cdiag(i, j, k) +

wfd = b, 9,) @ enl(ldl = 1k, 9], L) s
r(ir j - 1r k) e Gj(i, j - 1r k) +
Wil 1), 18 =) 9 edgll, 1) 8 =) =

wfd op I, 7)) = W, L9
r(i -1, 3 + 1, k)
o 4 ST SRR | PP SRS)
r(i -1, 3, k + 1)
r(i, j + 1, k - 1)
r(i, j - 1, k + 1)

*

* * ¥ * *

cij(i + 1, 3,
cij(i, j + 1,
C LKA R
cik(i, j, k +
cjk(i, j + 1,
CIK(AT FRK T

k)
k)
k)
1)
k)
1)

r

double negative visual effects

+ + + + +
L

Represents the sparsity of the upper triangular matrix

double negative visual effects

Obtaining Identical Results on CPU and GPU

Reduction:

\ 7" 4R "4 24 74
e Floating point addition is non-associative

Vo Vo

H EH B H E B
* Floating point error will be different \
EEEEEERN

e Order of operations is different

During development process, copy array onto CPU and perform sequential operation

double negative visual effects

Obtaining Identical Results on CPU and GPU

: : 4 h
Fused MU|t|PIY'Add (FMA)- __device double mul(double a, double b)
{
e FMA performs rounding once FREE gy
return * D}
: _ #else
e Requires two operations on CPU return dmul rn(a, b):
#endif
» Floating point error will be different | } y,

Use special instruction to force GPU to do multiply and addition as two operations

double negative visual effects

0:15

0:10

* | eft side (green bar) is CPU, pink bar FX4800, blue bar C2050 0:05

¢ Simulation domain is 150 x 150 x 150, residual tolerance 0.1

1 O

* Both visually accurate though not identical due to differing algorithms

double negative visual effects

1:00

0:45

0:30

0:25

¢ Simulation domain is 200 x 200 x 200, residual tolerance 0.0000|

1.95 MV (125 x 125 x 125)

Residual Tolerance = 0. |

double negative visual effects

CPUTime =43m l4s

Transfer Projection Speed Up Total Speed Up
FX4800 9m 53s 3m 34s 12.1 x 3.2 x
C2050 8m |2s 2m |ls 19.8 x 4.2 x
8.0 MV (200 x 200 x 200) Residual Tolerance = 0.00001| CPU Time = 10h 57m
Transfer Projection Speed Up Total Speed Up
FX4800 I8m Sls 55m 5s 1.9 x 8.9 x
C2050 19m 9s 32m I8s 20.3 x 12.8 x

double negative visual effects

Double Negative now has a GPU renderfarm!

Currently 15 machines in a air conditioned room on site:

* |4 machines with Quadro FX4800 GPUs
* | machine with a Tesla C1060 GPU

Artists are gaining confidence in using this new technology

Issues with retaining the same look during development

double negative visual effects

Scalability
Maximum simulation domain sizes: Quadro FX4800 Tesla C 1060
Important to be scalable for the future 6.0 MV 43004
~ 2553 ~ 3353
< » KL —
[Global Memory } [Shared Memory]
5-6 GB/s N |44 GBIs D2 -

coalescing

double negative visual effects

Scalability

& : e {1 ® Multi-GPU machines allow for much larger domain sizes

* Memory transfer now only required for edge cells

* Provides flexibility for handling any project or simulation

double negative visual effects

GPU Strategy

e Always looking for better ways of parallel preconditioning our Poisson solver

* Pressure projection is now no longer the bottleneck

e Blocking layout an important step in moving more fluids computation to GPU

e Scalability needs further investigation

e Confidence of artists in using the GPU has increased

!

\ ﬁf
t' < E‘}; ,

