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1. Introduction

Motivation
Knowledge of the fluid pressure in rock layers is important for an oil
company to predict the presence of oil and gas in reservoirs.

The earth’s crust has a layered structure
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Incompressible Navier-Stokes problems

Discretized incompressible Navier-Stokes

• Momentum equations
• Pressure equation
• Transport equation

Coupled problem

(

Q G

GT 0

)(

u

p

)

=

(

b1

b2

)

, u ∈ R
n and p ∈ R

m

Solve the system Ax = b
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2. A parallel Krylov method for finite element problems

Data distribution

original domain

splitting

sub-domain 1 sub-domain 2 subdomain 1 subdomain 2
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Parallelization of ICCG

ICCG
k = 0, r0 = b − Ax0, p1 = z1 = L−T L−1r0;
while ‖rk‖2 > ε do

k = k + 1;
αk = (rk−1,zk−1)

(pk,Apk) ;
xk = xk−1 + αkpk;
rk = rk−1 − αkApk;
zk = L−T L−1rk;
βk = (rk,zk)

(rk−1,zk−1) ;

pk+1 = zk + βkpk;
end while
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Explanation for a 1D example

Building blocks
• vector update
• inner product
• matrix vector product
• preconditioner vector product

−
d2y

dx2
= f, y(0) = y(1) = 0.

Take n = 5 and decompose the domain into two subdomains (1 and 2)
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Vector update

0 1 2 3 4 5 6
x=0 x=1

We define I1 = {1, 2, 3, } and I2 = {3, 4, 5}. Note that there is an
overlap of 1 point.

Global vector x =















x1

x2

x3

x4

x5















, local vectors







x1

x2

x3






and







x3

x4

x5






.

Vector update is straight forward.
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Inner product

• Determine the local innerproduct
• Sum the local innerproducts by MPI_ALLREDUCE

But

The contributions of the interface points are used more than once.

Solution: use the interface points only in one local inner product.
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Matrix vector product

A =















2 −1 0 0 0

−1 2 −1 0 0

0 −1 1 0 0

0 0 0 0 0

0 0 0 0 0















+















0 0 0 0 0

0 0 0 0 0

0 0 1 −1 0

0 0 −1 2 −1

0 0 0 −1 2















A =

(

A11 0

0 0

)

+

(

0 0

0 A22

)

The global matrix vector product p = Ax:

1. Determine







p1

p2

pl
3






= A11







x1

x2

x3






and







pr
3

p4

p5






= A22







x3

x4

x5







in parallel.

2. Communication: send pl
3 from CPU1 to CPU2 and send pr

3 from
CPU2 to CPU1. (nearest neighbour communication)

3. Determine on both processors p3 = pl
3 + pr

3 in parallel.
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Parallelization of a block preconditioner

Take as preconditioner the following

p = P−1x =

(

p
∑

i=1

RT
i P−1

i,i Ri

)

x

where
Pi,i ≈ Ai,i

In our example

R1 =







1 0 0 0 0

0 1 0 0 0

0 0 1 0 0






and R2 =







0 0 1 0 0

0 0 0 1 0

0 0 0 0 1






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Parallelization of a block preconditioner

The global preconditioner vector product p = P−1x:
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3. Deflation and Coarse Grid Acceleration

A is SPD, Conjugate Gradients

P = I − AZE−1ZT with E = ZT AZ

and Z = [z1...zm], where z1, ..., zm are independent deflation vectors.

Properties

1. P T Z = 0 and PAZ = 0

2. P 2 = P

3. AP T = PA
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Deflated ICCG

x = (I − PT )x + PT x,

(I − PT )x = ZE−1ZT Ax = ZE−1ZT b, APT x = PAx = Pb.

DICCG
k = 0, r̂0 = Pr0, p1 = z1 = L−T L−1r̂0;
while ‖r̂k‖2 > ε do

k = k + 1;
αk = (r̂k−1,zk−1)

(pk,PApk) ;
xk = xk−1 + αkpk;
r̂k = r̂k−1 − αkPApk;
zk = L−T L−1r̂k;
βk = (r̂k,zk)

(r̂k−1,zk−1) ; pk+1 = zk + βkpk;

end while
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Variants for values at interfaces

zi = 1 on Ωi and zi = 0 on Ω \ Ω̄i

1. no overlap

zi = 1 at one subdomain
zi = 0 at other subdomains

2. complete overlap

zi = 1 at all subdomains

3. average overlap

zi = 1
nneighbors

at all subdomains

4. weighted overlap (−div(σ∇u) = f )

zi = σ(i)
P

σ(neighbors)
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Error for Block IC and Deflation

Results for constant coefficients

and disontinuous coefficients

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

iterate

||x
 −

 x
i ||

2

no deflation
no overlap
complete overlap
weighted overlap
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Parallel implementation (initialization)

Processor 1 Processor 2

Make z1 Make z2

communication
z2Γ z1Γ

Make Az1 and Az2Γ Make Az2 and Az1Γ

communication
sum up sum up

E11 = zT
1 Az1, E22 = zT

2 Az2,
E12 = zT

1 Az2Γ E12 = zT
2 Az1Γ

communication

Determine Choleski
decomposition of E
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Parallel implementation (during iteration)

Pv = v − AZ(ZT AZ)−1ZT v = v − AZE−1ZT v

Processor 1 Processor 2

Compute zT
1 v Compute zT

2 v

communication

y = E−1

(

zT
1 v

zT
2 v

)

communication

v − y1Az1 − y2Az2Γ v − y1Az1Γ − y2Az2
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Coarse Grid Correction of ICCG

Definition
- Z ∈ R

n×m with independent columns.
- E = ZT AZ ∈ R

m×m, E is SPD.
- PC = L−T L−1 + σZE−1ZT .

CICCG
k = 0, r0 = b − Ax0, p1 = z1 = L−T L−1r0;
while ‖rk‖2 > ε do

k = k + 1;
αk = (rk−1,zk−1)

(pk,Apk) ;
xk = xk−1 + αkpk;
rk = rk−1 − αkApk;
zk = PCrk = L−T L−1rk + σZE−1ZT rk;
βk = (rk,zk)

(rk−1,zk−1) ; pk+1 = zk + βkpk;

end while
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Properties of Deflation and CGC

PD = I − AZE−1ZT PC = I + σZE−1ZT

Properties of PD

- PDA is symmetric and positive semidefinite

- PD is a projection, PDAZ = 0

- since PDA is singular, a good termination criterion is important

Properties of PC

- PC is symmetric positive definite

- A
1

2 (PC − I)A
1

2 is a projection
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Properties of Deflation and CGC

Definition
Eigenpair {λi, vi}, so Avi = λivi with 0 < λ1 ≤ . . . ≤ λn.
Take Z = [v1 . . . vm].

Theorem
- the spectrum of PDA is {0, . . . , 0, λm+1, . . . , λn}

- the spectrum of PCA is {σ + λ1, . . . , σ + λm, λm+1, . . . , λn}

Corollary

DICCG converges faster than CICCG if Z = [v1 . . . vm].
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Deflation and Coarse Grid Correction (preliminaries)

Notation: A, B are Hermitian, A � B, if A − B is positive semidefinite

Some results from Horn and Johnson, Matrix Analysis

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B)

If A, B are positive definite with A � B, then λi(A) ≥ λi(B).

Suppose that B has rank at most m. Then
• λk(A + B) ≤ λk+m(A), k = 1, 2, · · ·n − m,

• λk(A) ≤ λk+m(A + B), k = 1, 2, · · ·n − m.
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Deflation and Coarse Grid Correction (main result)

Theorem
Let A be symmetric positive definite and Z has rank Z = m. Let
E := ZT AZ. Then

λ1(PDA) = · · · = λm(PDA) = 0

λn(PDA) ≤ λn(PCA)

λm+1(PDA) ≥ λ1(PCA)

Theorem
Z1 ∈ R

n×r, Z2 ∈ R
n×s, rankZ1 = r and rankZ2 = s. If ImZ1 ⊆ ImZ2,

then

λn((I − AZ1E
−1
1 ZT

1 )A) ≥ λn((I − AZ2E
−1
2 ZT

2 )A)

λr+1((I − AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I − AZ2E
−1
2 ZT

2 )A)
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Deflation and Coarse Grid Correction combined with a preconditioner

Definition

PCM−1 := M−1 + σZE−1ZT .

Theorem
Let A and M be symmetric positive definite. Let Z ∈ R

n×m with
rankZ = m. Let E := ZT AZ. Then

λn(M−1PDA) ≤ λn(PCM−1A),

λm+1(M
−1PDA) ≥ λ1(PCM−1A).

Corollary

DICCG converges faster than CICCG for general projection vectors.
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4. Numerical experiments

Oil flow problem

700

710

720

730

740

750

1260
1270

1280
1290

1300
1310

1320
-6

-5

-4

-3

-2

-1

0

10

10
-7

10
-4

10
-7

Permeability

Sandstone

Shale

Shale

Sandstone/Shale

Composition

method Deflation CGC

iterations 36 47
CPU time 5.9 8.2

C. Vuik, June 10, 2003 26 – p.26/??



Poisson on parallel layers
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Poisson on layers and blocks

Layers

Blocks
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Poisson on layers and blocks
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5. Conclusions

• Block preconditioned Krylov methods combined with Deflation or
CGC are well parallelizable (scalable, good speed up).

• For the vertex centered case, the weighted overlap strategy is
optimal

• DICCG is more efficient than CICCG.
• Choices for the deflation vectors lead to comparable results in

DICCG and CICCG.
• DICCG is a robust and efficient method to solve diffusion

problems with discontinuous coefficients.
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Further information

• http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html

• C. Vuik, A. Segal and J.A. Meijerink
J. Comp. Phys., 152, pp. 385-403, 1999.

• J. Frank and C. Vuik
SIAM Journal on Scientific Computing, 23, pp. 442–462, 2001

• C. Vuik, A. Segal, L. El Yaakoubi and E. Dufour
Applied Numerical Mathematics, 41, pp. 219–233, 2002

• F.J. Vermolen, C. Vuik and A. Segal
J. of Comp. Methods in Sciences and Engineering, to appear

• R. Nabben and C. Vuik
A comparison of Deflation and Coarse Grid Correction, to appear
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Overview

Krylov Ar

Preconditioned Krylov L−T L−1Ar

Block Preconditioned Krylov
m
∑

i=1

(L−T
i L−1

i )Ar

Block Preconditioned Deflated Krylov
m
∑

i=1

(L−T
i L−1

i )PAr
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