Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions

Projection acceleration of Krylov solvers

C. Vuik¹, J.M. Tang¹, R. Nabben²

¹ Delft University of Technology Delft Institute of Applied Mathematics

²Technische Universität Berlin Institut für Mathematik

ICIAM 2007 July 16–20, 2007

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions

Outline

Comparison

Numerical Results

Knowledge of the fluid pressure in rock layers is important for an oil company to predict the presence of oil and gas in reservoirs.

The earth's crust has a layered structure

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Introduction						
Bubbly	flow					

Simulation of flows with bubbles and droplets

Mathematical model for layered problem

Computation of fluid pressure $-\operatorname{div}(\sigma \nabla p(x)) = 0$ on Ω , *p* fluid pressure, σ permeability

Introduction ○○○●○	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions		
Introduction								
Properties and Applications								

Problem

Ax = b

A is sparse and SPD Condition number of A is $O(10^7)$, due to large contrast in permeability

Applications

- reservoir simulations
- porous media flow
- electrical power networks
- semiconductors
- magnetic field simulations
- bubbly flow

 Introduction
 Deflated ICCG
 Projection Methods
 Comparison
 Application to Bubbly Flows
 Numerical Results
 Conclusions

 00000
 00000
 000000
 000000
 000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Spectrum of IC preconditioned matrix

Definitions

L is the Incomplete Cholesky factor of A

k^s is the number of high-permeability domains not connected to a Dirichlet boundary

Theorem

The IC preconditioned matrix $L^{-1}AL^{-T}$ has k^s eigenvalues of $O(\varepsilon)$.

Idea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M⁻¹Ar

Block Preconditioned Krylov

 $\sum_{i=1}^{m} (M_i^{-1}) Ar$

Block Preconditioned Deflated Krylov

$$\sum_{i=1}^{m} (M_i^{-1}) P A_i$$

Introduction	Deflated ICCG ○●○○○○	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Deflated ICCG						
Choices	5					

Various choices

- Projection vectors
 Physical vectors, eigenvectors, coarse grid projection vectors (constant, linear, ...)
- Projection method Deflation, coarse grid projection, balancing, augmented, FETI
- Implementation

sparseness, with(out) using projection properties, optimized, ...

Introduction	Deflated ICCG 00●000	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Deflated ICCG						
Deflatio	n Methor	1				

Notation

Projection matrix is defined by P := I - AQ with

- correction matrix $Q := ZE^{-1}Z^T$
- coarse matrix $E := Z^T A Z$
- projection subspace matrix $Z \in \mathbb{R}^{n \times r}$ where $r \ll n$

Remarks

- *E* has dimensions $r \times r \rightarrow E^{-1}$ is easy to compute
- Q is an approximation of A^{-1} based on a subspace

Deflated PCG

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where P = I - AQ

Introduction	Deflated ICCG 000●00	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Deflated ICCG						
Physica	deflatio	n vectors				

Subdomains

k is number of subdomains

 Ω_i , $i = 1, ..., k^s$ high-permeability subdomains without a Dirichlet B.C.; $i = k^s + 1, ..., k^h$ remaining high-permeability subdomains

Physical deflation vectors ¹

- define z_i for $i \in \{1, ..., k^s\}$
- $z_i = 1$ on $\overline{\Omega}_i$ and $z_i = 0$ on $\overline{\Omega}_j, j \neq i, j \in \{1, ..., k^h\}$
- z_i satisfies equation:

$$-\operatorname{div}(\sigma_j \nabla z_i) = 0 \text{ on } \Omega_j, j \in \{k^h + 1, ..., k\},\$$

with appropriate boundary conditions

¹C. VUIK, A. SEGAL, L. EL YAAKOUBI AND E. DUFOUR, A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients. Applied Numerical Mathematics. **41**, pp. 219–233, 2002.

Introduction	Deflated ICCG 0000●0	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Deflated ICCG						
Geome	try oil flov	w problem				

Introduction	Deflated ICCG 00000●	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Deflated ICCG						
Results	oil flow p	oroblem				

Varying $\sigma_{\rm shale}$

σ	ICCG		DICCG		
	λ_{min}	iter	λ_{min}	iter	
10^{-3}	$1.5 \cdot 10^{-2}$	26	$6.9 \cdot 10^{-2}$	20	
10^{-5}	$2.2 \cdot 10^{-4}$	59	$7.7 \cdot 10^{-2}$	20	
10 ⁻⁷	$2.3\cdot10^{-6}$	82	$7.7 \cdot 10^{-2}$	20	

Varying accuracy

accuracy	IC	CG	DICCG		
	iter	CPU	iter	CPU	
10 ⁻⁵	82	18.9	20	6.3	
10 ⁻³	78	18.0	12	4.1	
10 ⁻¹	75	17.2	2	1.2	

Introduction	Deflated ICCG	Projection Methods ●0000	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Projection Met	hods					
Standa	rd Projec	tion Methods	S			

Deflated PCG

Solve iteratively:

$$M^{-1}PAx = M^{-1}Pb$$

where P = I - AQ

Additive Coarse Grid Correction Method ¹

Solve iteratively:

$$(M^{-1} + Q)Ax = (M^{-1} + Q)b$$

Balancing Neumann-Neumann Method²

Solve iteratively:

$$(P^T M^{-1} P + Q)Ax = (P^T M^{-1} P + Q)b$$

¹ J.H. BRAMBLE, J.E. PASCIAK AND A.H. SCHATZ, *The construction of preconditioners for elliptic problems by substructuring*, I. Math. Comp., **47**, pp. 103–134, 1986.

Introduction	Deflated ICCG	Projection Methods ○●○○○	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Projection Met	hods					
Idea of	Projectio	n				

General Projected PCG

Solve iteratively:

$$\mathcal{P}Ax = \mathcal{P}b$$

where \mathcal{P} is a projection operator based on M^{-1} , P and Q

Idea of Projection Operator

 $\mathcal P$ gets rid of both small and/or large eigenvalues of A

Choices for ${\mathcal{P}}$

- Traditional PCG: $\mathcal{P} = M^{-1}$
- Deflated PCG: $\mathcal{P} = M^{-1}P$
- Additive: $\mathcal{P} = M^{-1} + Q$
- Balancing: $\mathcal{P} = P^T M^{-1} P + Q$
- Reduced Balancing / Deflation: $\mathcal{P} = P^T M^{-1}$

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Projection Meth	nods					

General Projection Methods

Possible Choices for ${\cal P}$									
	Name	Method	Operator \mathcal{P}						
	PCG	Traditional PCG	M^{-1}						
	DEF1	Deflated PCG 1	$M^{-1}P$						
	AD	Additive Coarse Grid Correction	$M^{-1} + Q$						
	BNN	Abstract Balanced PCG	$P^T M^{-1} P + Q$						
	DEF2	Deflated PCG 2	$P^T M^{-1}$						
	R-BNN2	Reduced Balanced PCG 2	$P^T M^{-1}$						
	R-BNN1	Reduced Balanced PCG 1	$P^T M^{-1} P$						
	A-DEF1	Adapted Deflated PCG 1	$M^{-1}P + Q$						
	A-DEF2	Adapted Deflated PCG 2	$P^T M^{-1} + Q$						

Origin of the Methods

Methods can be derived from the theory of

- deflation
- odomain decomposition
- multigrid

Introduction	Deflated ICCG	Projection Methods 000●0	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Projection Met	hods					
Genera	al Projecti	on Methods				

Deflation

- M is a preconditioner
- P is the deflation matrix
- Z is the deflation subspace matrix consisting of approximated eigenvectors
- r is small
- Ex = y is solved directly

Multigrid

- M is a smoother
- P is a coarse grid correction
- Z is the restriction operator
- Z^T is the prolongation/interpolation operator
- r is relatively large
- Ex = y is solved recursively

Introduction	Deflated ICCG	Projection Methods 0000●	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Projection Met	hods					
Genera	al Projecti	on Methods				

Domain Decomposition

- M deals with exact/inexact solves on subdomains
- P is a subspace correction
- Z is the restriction operator
- Z^T is the prolongation/interpolation operator
- I ≪ r ≪ n
- Ex = y is solved directly/iteratively

Introduction	Deflated ICCG	Projection Methods	Comparison ●○○○○○○	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						
Previou	is Compa	risons				

Previous Works

Comparisons of DEF1, AD and BNN have already been performed ^{1 2 3}

Main Result

In exact arithmetic, DEF1 performs better than both BNN and AD

Best Method of our List?

- Theoretical comparison
- Numerical comparison

First step: Compare the condition numbers of system $\mathcal{P}A$

³R. NABBEN AND C. VUIK, A comparison of abstract versions of deflation, balancing and additive coarse grid correction

¹ R. NABBEN AND C. VUIK, A comparison of Deflation and Coarse Grid Correction applied to porous media flow, SIAM J. Numer. Anal., 42, pp. 1631-1647, 2004.

²R. NABBEN AND C. VUIK. A Comparison of Deflation and the Balancing Preconditioner. SIAM J. Sci. Comput., 27, pp. 1742–1759. 2006.

Introduction	Deflated ICCG	Projection Methods	Comparison O●OOOOO	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						

Theoretical Comparison

Theorem (Class 1)

DEF1, DEF2, R-BNN1 and R-BNN2 have the same condition numbers:

$$\sigma\left(\boldsymbol{M}^{-1}\boldsymbol{P}\boldsymbol{A}\right) = \sigma\left(\boldsymbol{P}^{\mathsf{T}}\boldsymbol{M}^{-1}\boldsymbol{A}\right) = \sigma\left(\boldsymbol{P}^{\mathsf{T}}\boldsymbol{M}^{-1}\boldsymbol{P}\boldsymbol{A}\right) = \{0,0,\ldots,0,\lambda_{r+1},\ldots,\lambda_n\}$$

Theorem (Class 2)

BNN, A-DEF1, A-DEF2 have the same condition numbers:

$$\sigma\left((P^{T}M^{-1}P+Q)A\right) = \sigma\left((M^{-1}P+Q)A\right) = \sigma\left((P^{T}M^{-1}+Q)A\right)$$
$$= \{1, 1, \dots, 1, \lambda_{r+1}, \dots, \lambda_{n}\}$$

Theorem

AD has a worse condition number compared to the other projection methods

Introduction	Deflated ICCG	Projection Methods	Comparison 00●0000	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						

Numerical Comparison

Introduction	Deflated ICCG	Projection Methods	Comparison ○○○●○○○	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						
Results						

Best Method

DEF1 ($\mathcal{P} = M^{-1}P$), DEF2 ($\mathcal{P} = P^T M^{-1}$) and R-BNN2 ($\mathcal{P} = P^T M^{-1}$) are the best methods, because

- their corresponding matrices have the best condition numbers
- they have the lowest cost per iteration

Most Stable Method?

Compare methods with respect to

- inaccurate E⁻¹
- severe termination criterion
- perturbed starting vector

Introduction	Deflated ICCG	Projection Methods	Comparison ○○○○●○○	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						
Theore	tical Com	parison				

Spectrum after Perturbating E^{-1} with a Small Matrix $\epsilon Rand(k, k)$

DEF1, DEF2, R-BNN1 and R-BNN2:

 $\sigma \approx \{\mathcal{O}(\epsilon), \ldots, \mathcal{O}(\epsilon), \lambda_{r+1}, \ldots, \lambda_n\}$

BNN, A-DEF1, A-DEF2:

 $\sigma \approx \{1 + \mathcal{O}(\epsilon), 1 + \mathcal{O}(\epsilon), \dots, 1 + \mathcal{O}(\epsilon), \lambda_{r+1}, \dots, \lambda_n\}$

Consequence

Class 1 is unstable, whereas class 2 is stable

Introduction	Deflated ICCG	Projection Methods	Comparison ○○○○○●○	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						

Numerical Comparison

Introduction	Deflated ICCG	Projection Methods	Comparison ○○○○○○●	Application to Bubbly Flows	Numerical Results	Conclusions
Comparison						
Results						

Best Method?

A-DEF2 ($\mathcal{P} = P^T M^{-1} + Q$) is the best method because

- it is fast and stable
- it has a low cost per iteration

Conclusions¹

- DEF1, DEF2, and R-BNN2 have the best condition numbers and the lowest cost per iteration
- BNN, A-DEF1, A-DEF2 are the most stable methods

¹J.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Theoretical and numerical comparison of various projection methods derived

25/39 from deflation, domain decomposition and multigrid methods, submitted. (See also DUT Report 07-04) 🔬 🗇 🕨 🤄 🖹 🕨

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Application to	Bubbly Flows					
Probler	n Settina					

Question 2

How to choose Z for bubbly flows?

Background

- Simulation of flows with bubbles and droplets
- Flow governed by the Navier-Stokes equations with unknowns *p* and *u*:

$$\begin{cases} \frac{\partial u}{\partial t} + u \cdot \nabla u + \frac{1}{\rho} \nabla p = \frac{1}{\rho} \nabla \cdot \mu \left(\nabla u + \nabla u^T \right) + g \\ \nabla \cdot u = 0 \end{cases}$$

Solution using operator-splitting methods

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with $\mathcal{O}(10^{-3})$ -eigenvalues

- constant in bubbles
- linear elsewhere

Approximations

The eigenvectors remain good approximations if

- the linear parts are perturbed arbitrarily
- the constant part are perturbed by a constant

Consequence

Levelset projection vectors can approximate these eigenvectors

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions			
Application to Bubbly Flows									
Levelse	et Projecti	on							

Projection subspace matrix

$$\begin{aligned} Z &= [z_1 \; z_2 \; \cdots \; z_r] \text{ consists of} \\ (z_j)_i &= \left\{ \begin{array}{cc} 0, & x_i \in \Omega \setminus \bar{\Omega}_j \\ 1, & x_i \in \Omega_j \end{array} \right. \end{aligned}$$

(日)

Introduction Deflated ICCG Projection Methods Comparison Application to Bubbly Flows OcoCo Conclusions OcoCo Conclusions

Eigenvectors associated with $\mathcal{O}(1)$ -eigenvalues

Smooth and slow-varying in the whole domain

Approximations

These eigenvectors remain good approximations if they are slightly perturbed

Consequence

Subdomain projection vectors can approximate these eigenvectors

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions				
Application to Bubbly Flows										
Subdor	Subdomain Projection									

Projection subspace matrix

$$Z = [z_1 \ z_2 \ \cdots \ z_r] \text{ consists of}$$

$$(z_j)_i = \begin{cases} 0, & x_i \in \Omega \setminus \bar{\Omega}_j \\ 1, & x_i \in \Omega_j \end{cases}$$

Introduction Deflated ICCG Projection Methods Comparison OCOCO Concernation to Bubbly Flows Numerical Results Conclusions OCOCO Concernation to Bubbly Flows

Properties of Projection Vectors

Levelset Projection Vectors

- Projection of O(10⁻³)-eigenvalues to zero
- Very sparse structure
- Only a few vectors required
- Variable at each time step

Subdomain Projection Vectors

- Projection of O(1)-eigenvalues to zero
- Sparse structure
- Reasonable number of vectors required
- Fixed at each time step

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions
Application to	Bubbly Flows					
Further	Analysis					

Combination of Levelset and Subdomain Projection

Both approaches can be combined leading to levelset-subdomain projection:

Properties of Levelset-Subdomain Projection Vectors

- Projection of both $\mathcal{O}(10^{-3})$ and $\mathcal{O}(1)$ -eigenvalues to zero
- Sparse structure
- Many levelset-subdomain projection vectors are required
- Variable at each time step

Settings

- 3-D bubbly flow, water and air, density ratio = 10^3
- Finite differences, uniform Cartesian grid, $n = 100^3$
- Ax = b is solved, ICCG and DICCG, tol = 10^{-8}

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results ○●○○○○	Conclusions
Experiment wit	h Fixed Density Fie	elds				
Results						

Results for 8 Bubbles

Method	# Iter.	CPU
ICCG	291	43.0
DICCG-2 ³	160	29.1
DICCG-5 ³	72	14.2
DICCG -10 ³	36	8.2
DICCG-20 ³	22	27.2

DICCG-r	=	DICCG with r subdomain deflation vectors
# Iter.	=	number of iterations
CPU	=	computational time in seconds

Introduction Deflated ICCG Projection Methods Comparison Application to Bubbly Flows Numerical Results Conclusions Conclusin

Conclusions of Experiment 1

- DICCG performs much better compared to ICCG
- Optimal choice of *r* in 3-D : $r \approx \sqrt{n}$
- Deflation vectors approximate the 'bad' eigenvectors

Question

What about realistic time-dependent problems?

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results ○○○●○○	Conclusions		
Experiment with Varying Density Fields								
Experin	nent 2							

Rising Bubble in Water without Surface Tension

Simulation of the first 250 time steps:

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions		
Experiment with Varying Density Fields								
Results								

Results ICCG and DICCG with $r = 10^3$

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions			
Experiment with Varying Density Fields									
Discus	sion of the	e Results							

Conclusions of Experiment 2

- DICCG with $r = 10^3$ performs better compared to ICCG
- DICCG hardly depends on the geometry of the problem

Introduction	Deflated ICCG	Projection Methods	Comparison	Application to Bubbly Flows	Numerical Results	Conclusions •
Conclusions						
Conclu	sions					

- DICCG is a robust and efficient method to solve elliptic problems with discontinuous coefficients
- The choice of the projection vectors is important for the success of a projection method
- DEF1, DEF2, and R-BNN2 have the best condition numbers and the lowest cost per iteration
- BNN, A-DEF1, A-DEF2 are the most stable methods

Further reading

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- http://ta.twi.tudelft.nl/nw/users/vuik/papers/Tan07NVE.pdf