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Introduction

Layered problem

Knowledge of the fluid pressure in rock layers is important for an oil company to predict
the presence of oil and gas in reservoirs.

The earth’s crust has a layered structure
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Introduction

Bubbly flow

Simulation of flows with bubbles and droplets
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Introduction

Mathematical model for layered problem

Computation of fluid pressure −div(σ∇p(x)) = 0 on Ω, p fluid pressure, σ permeability
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Introduction

Properties and Applications

Problem

Ax = b

A is sparse and SPD
Condition number of A is O(107), due to large contrast in permeability

Applications

reservoir simulations

porous media flow

electrical power networks

semiconductors

magnetic field simulations

bubbly flow

6 / 39



Introduction Deflated ICCG Projection Methods Comparison Application to Bubbly Flows Numerical Results Conclusions

Introduction

Spectrum of IC preconditioned matrix

Definitions

L is the Incomplete Cholesky factor of A

ks is the number of high-permeability domains not connected to a Dirichlet boundary

Theorem

The IC preconditioned matrix L−1AL−T has ks eigenvalues of O(ε).

7 / 39



Introduction Deflated ICCG Projection Methods Comparison Application to Bubbly Flows Numerical Results Conclusions

Deflated ICCG

Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M−1Ar

Block Preconditioned Krylov
m
P

i=1
(M−1

i )Ar

Block Preconditioned Deflated Krylov
m
P

i=1
(M−1

i )PAr
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Deflated ICCG

Choices

Various choices

Projection vectors
Physical vectors, eigenvectors, coarse grid projection vectors (constant, linear, ...)

Projection method
Deflation, coarse grid projection, balancing, augmented, FETI

Implementation
sparseness, with(out) using projection properties, optimized, ...
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Deflated ICCG

Deflation Method

Notation

Projection matrix is defined by P := I − AQ with

correction matrix Q := ZE−1Z T

coarse matrix E := Z T AZ

projection subspace matrix Z ∈ R
n×r where r ≪ n

Remarks

E has dimensions r × r → E−1 is easy to compute

Q is an approximation of A−1 based on a subspace

Deflated PCG

Solve iteratively:
M−1PAx = M−1Pb

where P = I − AQ
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Deflated ICCG

Physical deflation vectors

Subdomains

k is number of subdomains

Ωi , i = 1, ..., ks high-permeability subdomains without a Dirichlet B.C.;
i = ks + 1, ..., kh remaining high-permeability subdomains

Physical deflation vectors 1

define zi for i ∈ {1, ..., ks}
zi = 1 on Ω̄i and zi = 0 on Ω̄j , j 6= i , j ∈ {1, ..., kh}
zi satisfies equation:

−div(σj∇zi ) = 0 on Ωj , j ∈ {kh + 1, ..., k},

with appropriate boundary conditions

1C. VUIK, A. SEGAL, L. EL YAAKOUBI AND E. DUFOUR, A comparison of various deflation vectors applied to elliptic problems with
discontinuous coefficients, Applied Numerical Mathematics, 41, pp. 219–233, 2002.11 / 39
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Deflated ICCG

Geometry oil flow problem
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Deflated ICCG

Results oil flow problem

Varying σshale

σ ICCG DICCG

λmin iter λmin iter
10−3 1.5 · 10−2 26 6.9 · 10−2 20
10−5 2.2 · 10−4 59 7.7 · 10−2 20
10−7 2.3 · 10−6 82 7.7 · 10−2 20

Varying accuracy

accuracy ICCG DICCG

iter CPU iter CPU
10−5 82 18.9 20 6.3
10−3 78 18.0 12 4.1
10−1 75 17.2 2 1.2
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Projection Methods

Standard Projection Methods

Deflated PCG

Solve iteratively:
M−1PAx = M−1Pb

where P = I − AQ

Additive Coarse Grid Correction Method 1

Solve iteratively:
(M−1 + Q)Ax = (M−1 + Q)b

Balancing Neumann-Neumann Method 2

Solve iteratively:
(PT M−1P + Q)Ax = (PT M−1P + Q)b

1J.H. BRAMBLE, J.E. PASCIAK AND A.H. SCHATZ, The construction of preconditioners for elliptic problems by substructuring, I. Math.
Comp., 47, pp. 103–134, 1986.

2J. MANDEL, Balancing domain decomposition, Commun. Appl. Numer. Meth., 9, pp. 233–241, 1993.14 / 39
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Projection Methods

Idea of Projection

General Projected PCG

Solve iteratively:
PAx = Pb

where P is a projection operator based on M−1, P and Q

Idea of Projection Operator

P gets rid of both small and/or large eigenvalues of A

Choices for P

Traditional PCG: P = M−1

Deflated PCG: P = M−1P

Additive: P = M−1 + Q

Balancing: P = PT M−1P + Q

Reduced Balancing / Deflation: P = PT M−1
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Projection Methods

General Projection Methods

Possible Choices for P

Name Method Operator P
PCG Traditional PCG M−1

DEF1 Deflated PCG 1 M−1P
AD Additive Coarse Grid Correction M−1 + Q
BNN Abstract Balanced PCG PT M−1P + Q
DEF2 Deflated PCG 2 PT M−1

R-BNN2 Reduced Balanced PCG 2 PT M−1

R-BNN1 Reduced Balanced PCG 1 PT M−1P
A-DEF1 Adapted Deflated PCG 1 M−1P + Q
A-DEF2 Adapted Deflated PCG 2 PT M−1 + Q

Origin of the Methods

Methods can be derived from the theory of

deflation

domain decomposition

multigrid
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Projection Methods

General Projection Methods

Deflation

M is a preconditioner

P is the deflation matrix

Z is the deflation subspace matrix consisting of approximated eigenvectors

r is small

Ex = y is solved directly

Multigrid

M is a smoother

P is a coarse grid correction

Z is the restriction operator

Z T is the prolongation/interpolation operator

r is relatively large

Ex = y is solved recursively
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Projection Methods

General Projection Methods

Domain Decomposition

M deals with exact/inexact solves on subdomains

P is a subspace correction

Z is the restriction operator

Z T is the prolongation/interpolation operator

1 ≪ r ≪ n

Ex = y is solved directly/iteratively
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Comparison

Previous Comparisons

Previous Works

Comparisons of DEF1, AD and BNN have already been performed 1 2 3

Main Result

In exact arithmetic, DEF1 performs better than both BNN and AD

Best Method of our List?

Theoretical comparison

Numerical comparison

First step: Compare the condition numbers of system PA

1R. NABBEN AND C. VUIK, A comparison of Deflation and Coarse Grid Correction applied to porous media flow, SIAM J. Numer. Anal.,
42, pp. 1631–1647, 2004.

2R. NABBEN AND C. VUIK, A Comparison of Deflation and the Balancing Preconditioner, SIAM J. Sci. Comput., 27, pp. 1742–1759,
2006.

3R. NABBEN AND C. VUIK, A comparison of abstract versions of deflation, balancing and additive coarse grid correction
preconditioners, Report 07-01, 2007. (submitted)19 / 39
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Comparison

Theoretical Comparison

Theorem (Class 1)

DEF1, DEF2, R-BNN1 and R-BNN2 have the same condition numbers:

σ
“

M−1PA
”

= σ
“

PT M−1A
”

= σ
“

PT M−1PA
”

= {0, 0, . . . , 0, λr+1, . . . , λn}

Theorem (Class 2)

BNN, A-DEF1, A-DEF2 have the same condition numbers:

σ
“

(PT M−1P + Q)A
”

= σ
“

(M−1P + Q)A
”

= σ
“

(PT M−1 + Q)A
”

= {1, 1, . . . , 1, λr+1, . . . , λn}

Theorem

AD has a worse condition number compared to the other projection methods
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Comparison

Numerical Comparison

Typical Convergence Behavior
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Comparison

Results

Best Method

DEF1 (P = M−1P), DEF2 (P = PT M−1) and R-BNN2 (P = PT M−1) are the best
methods, because

their corresponding matrices have the best condition numbers

they have the lowest cost per iteration

Most Stable Method?

Compare methods with respect to

inaccurate E−1

severe termination criterion

perturbed starting vector
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Comparison

Theoretical Comparison

Spectrum after Perturbating E−1 with a Small Matrix ǫRand(k , k)

DEF1, DEF2, R-BNN1 and R-BNN2:

σ ≈ {O(ǫ), . . . ,O(ǫ), λr+1, . . . , λn}

BNN, A-DEF1, A-DEF2:

σ ≈ {1 + O(ǫ), 1 + O(ǫ), . . . , 1 + O(ǫ), λr+1, . . . , λn}

Consequence

Class 1 is unstable, whereas class 2 is stable
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Comparison

Numerical Comparison

Typical Convergence Behavior
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Comparison

Results

Best Method?

A-DEF2 (P = PT M−1 + Q) is the best method because

it is fast and stable

it has a low cost per iteration

Conclusions 1

DEF1, DEF2, and R-BNN2 have the best condition numbers and the lowest cost
per iteration

BNN, A-DEF1, A-DEF2 are the most stable methods

1J.M. TANG, R. NABBEN, C. VUIK AND Y.A. ERLANGGA, Theoretical and numerical comparison of various projection methods derived
from deflation, domain decomposition and multigrid methods, submitted. (See also DUT Report 07-04)25 / 39
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Application to Bubbly Flows

Problem Setting

Question 2

How to choose Z for bubbly flows?

Background

Simulation of flows with bubbles and droplets

Flow governed by the Navier-Stokes equations with
unknowns p and u:

8

<

:

∂u

∂t
+ u · ∇u +

1

ρ
∇p =

1

ρ
∇ · µ

`

∇u + ∇uT
´

+ g

∇ · u = 0

Solution using operator-splitting methods
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Application to Bubbly Flows

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with O(10−3)-eigenvalues

constant in bubbles

linear elsewhere

Approximations

The eigenvectors remain good approximations if

the linear parts are perturbed arbitrarily

the constant part are perturbed by a constant

Consequence

Levelset projection vectors can approximate these eigenvectors
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Application to Bubbly Flows

Levelset Projection

Ω1

Ω2

Ω

Projection subspace matrix

Z = [z1 z2 · · · zr ] consists of

(zj )i =



0, xi ∈ Ω \ Ω̄j
1, xi ∈ Ωj
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Application to Bubbly Flows

Analysis of Eigenvalues and Eigenvectors

Eigenvectors associated with O(1)-eigenvalues

Smooth and slow-varying in the whole domain

Approximations

These eigenvectors remain good approximations if they are slightly perturbed

Consequence

Subdomain projection vectors can approximate these eigenvectors
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Application to Bubbly Flows

Subdomain Projection

Ω

Ω

ΩΩ

Ω1 2

3 4

Projection subspace matrix

Z = [z1 z2 · · · zr ] consists of

(zj )i =



0, xi ∈ Ω \ Ω̄j
1, xi ∈ Ωj
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Application to Bubbly Flows

Properties of Projection Vectors

Levelset Projection Vectors

Projection of O(10−3)-eigenvalues to zero

Very sparse structure

Only a few vectors required

Variable at each time step

Subdomain Projection Vectors

Projection of O(1)-eigenvalues to zero

Sparse structure

Reasonable number of vectors required

Fixed at each time step
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Application to Bubbly Flows

Further Analysis

Combination of Levelset and Subdomain Projection

Both approaches can be combined leading to levelset-subdomain projection:

1
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107

9 12

Properties of Levelset-Subdomain Projection Vectors

Projection of both O(10−3)- and O(1)-eigenvalues to zero

Sparse structure

Many levelset-subdomain projection vectors are required

Variable at each time step
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Experiment with Fixed Density Fields

Experiment 1
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Settings

3-D bubbly flow, water and air, density ratio = 103

Finite differences, uniform Cartesian grid, n = 1003

Ax = b is solved, ICCG and DICCG, tol = 10−8
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Experiment with Fixed Density Fields

Results

Results for 8 Bubbles

Method # Iter. CPU

ICCG 291 43.0
DICCG−23 160 29.1
DICCG−53 72 14.2
DICCG−103 36 8.2
DICCG−203 22 27.2

DICCG−r = DICCG with r subdomain deflation vectors
# Iter. = number of iterations
CPU = computational time in seconds
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Experiment with Fixed Density Fields

Discussion of the Results

Conclusions of Experiment 1

DICCG performs much better compared to ICCG

Optimal choice of r in 3-D : r ≈
√

n

Deflation vectors approximate the ‘bad’ eigenvectors

Question

What about realistic time-dependent problems?
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Experiment with Varying Density Fields

Experiment 2

Rising Bubble in Water without Surface Tension

Simulation of the first 250 time steps:

(a) t = 0 (b) t = 50 (c) t = 100

(d) t = 150 (e) t = 200 (f) t = 250
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Experiment with Varying Density Fields

Results

Results ICCG and DICCG with r = 103
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Experiment with Varying Density Fields

Discussion of the Results

Conclusions of Experiment 2

DICCG with r = 103 performs better compared to ICCG

DICCG hardly depends on the geometry of the problem
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Conclusions

Conclusions

DICCG is a robust and efficient method to solve elliptic problems with
discontinuous coefficients

The choice of the projection vectors is important for the success of a projection
method

DEF1, DEF2, and R-BNN2 have the best condition numbers and the lowest cost
per iteration

BNN, A-DEF1, A-DEF2 are the most stable methods

Further reading

http://ta.twi.tudelft.nl/nw/users/vuik/pub it def.html

http://ta.twi.tudelft.nl/nw/users/vuik/papers/Tan07NVE.pdf
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