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Incompressible Navier-Stokes problems

Discretized incompressible Navier-Stokes

Momentum equations

Pressure equation

Transport equation

Coupled problem
(

Q G
GT 0

)(

u
p

)

=

(

b1

b2

)

, u ∈ R
n and p ∈ R

m

Solve the system Ax = b
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Literature review

Robust preconditioners
(M)ICCG vd Vorst, Meijering, Gustafsson
ILUT Saad, MRILU Ploeg, Wubs
Navier-Stokes Elman, Silvester, Wathen, Golub
RIF Benzi, Tuma
Parallel preconditioners Block variants see above
ILU Bastian, Horton, Vuik, Nooyen, Wesseling
SPAI Grote, Huckle, Benzi, Tuma, Chow, Saad
Acceleration of parallel preconditioners
CGC Notay, vd Velde, Benzi, Frommer, Nabben, Szyld,
Chan, Mathew, Dryja, Widlund, Padiy, Axelsson, Polman
Deflation Nicolaides, Mansfield, Kolotilina, Frank, Vuik

Morgan, Chapman, Saad, Burrage, Ehrel, Pohl
FETI Farhat, Roux, Mandel, Klawonn, Widlund
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Data distribution

original domain

splitting

sub-domain 1 sub-domain 2 subdomain 1 subdomain 2
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Parallelization of ICCG

ICCG
k = 0, r0 = b − Ax0, p1 = z1 = L−T L−1r0;
while ‖rk‖2 > ε do

k = k + 1;
αk =

(rk−1,zk−1)
(pk ,Apk ) ;

xk = xk−1 + αk pk ;
rk = rk−1 − αkApk ;
zk = L−T L−1rk ;
βk = (rk ,zk)

(rk−1,zk−1)
;

pk+1 = zk + βkpk ;
end while
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Explanation for a 1D example

Building blocks

vector update

inner product

matrix vector product

preconditioner vector product

−
d2y
dx2 = f , y(0) = y(1) = 0.

Take n = 5 and decompose the domain into two subdomains (1
and 2)
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Vector update

0 1 2 3 4 5 6
x=0 x=1

We define I1 = {1, 2, 3, } and I2 = {3, 4, 5}. Note that there is
an overlap of 1 point.

Global vector x =













x1

x2

x3

x4

x5













, local vectors





x1

x2

x3



 and





x3

x4

x5



.

Vector update is straight forward.
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Inner product

Determine the local innerproduct

Sum the local innerproducts by MPI ALLREDUCE

But

The contributions of the interface points are used more than
once.
Solution: use the interface points only in one local inner
product.
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Matrix vector product

A =

(

A11 0
0 0

)

+

(

0 0
0 A22

)

The global matrix vector product p = Ax:

1 Determine





p1

p2

pl
3



 = A11





x1

x2

x3



 and





pr
3

p4

p5



 = A22





x3

x4

x5



 in parallel.

2 Communication: send pl
3 from CPU1 to CPU2 and send pr

3
from CPU2 to CPU1. (nearest neighbour communication)

3 Determine on both processors p3 = pl
3 + pr

3 in parallel.
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Parallelization of a block preconditioner

Take as preconditioner the following

p = P−1x =

( p
∑

i=1

RT
i P−1

i ,i Ri

)

x

where
Pi ,i ≈ Ai ,i

In our example

R1 =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



 and R2 =





0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
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Parallelization of a block preconditioner

The global preconditioner vector product p = P−1x:

1 Determine





p1

p2

pl
3



 = P−1
11





x1

x2

x3



 and





pr
3

p4

p5



 = P−1
22





x3

x4

x5



 in parallel.

2 Communication: send pl
3 from CPU1 to CPU2 and send pr

3
from CPU2 to CPU1. (nearest neighbour communication)

3 Determine on both processors p3 = pl
3 + pr

3 in parallel.
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Parallel results

480 × 480 grid, Cray T3E, DICCG
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Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M−1Ar

Block Preconditioned Krylov
m
∑

i=1
(M−1

i )Ar

Block Preconditioned Deflated Krylov
m
∑

i=1
(M−1

i )PAr
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Deflation operator

A is SPD, Conjugate Gradients

P = I − AZE−1Z T with E = Z T AZ

and Z = [z1...zm], where z1, ..., zm are independent deflation
vectors.

Properties
1 PT Z = 0 and PAZ = 0
2 P2 = P
3 APT = PA

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Deflated ICCG

x = (I − PT )x + PT x ,

(I − PT )x = ZE−1Z T b, APT x = PAx = Pb.

DICCG
k = 0, r̂0 = Pr0, p1 = z1 = L−T L−1r̂0;
while ‖r̂k‖2 > ε do

k = k + 1;
αk =

(r̂k−1,zk−1)
(pk ,PApk ) ;

xk = xk−1 + αk pk ;
r̂k = r̂k−1 − αkPApk ;
zk = L−T L−1r̂k ;
βk = (r̂k ,zk)

(r̂k−1,zk−1)
; pk+1 = zk + βk pk ;

end while
Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Variants for values at interfaces

zi = 1 on Ωi and zi = 0 on Ω \ Ω̄i

1 no overlap

zi = 1 at one subdomain
zi = 0 at other subdomains

2 complete overlap

zi = 1 at all subdomains
3 average overlap

zi = 1
nneighbors

at all subdomains

4 weighted overlap (−div(σ∇u) = f )

zi = σ(i)
P

σ(neighbors)
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Parallel implementation (initialization)

Processor 1 Processor 2

Make z1 Make z2

communication
z2Γ z1Γ

Make Az1 and Az2Γ Make Az2 and Az1Γ

communication
sum up sum up

E11 = zT
1 Az1, E22 = zT

2 Az2,
E12 = zT

1 Az2Γ E12 = zT
2 Az1Γ

communication
Determine Choleski
decomposition of E
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Parallel implementation (during iteration)

Pv = v − AZ (Z T AZ )−1Z T v = v − AZE−1Z T v

Processor 1 Processor 2

Compute zT
1 v Compute zT

2 v
communication

y = E−1
(

zT
1 v

zT
2 v

)

communication
v − y1Az1 − y2Az2Γ v − y1Az1Γ − y2Az2
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Numerical results

Poisson on parallel layers
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Idea of second-level preconditioners

Various choices are possible:

Projection vectors
Physical vectors, eigenvectors, coarse grid projection
vectors (constant, linear, ...)

Projection method
Deflation, coarse grid projection, balancing, augmented,
FETI, multi-grid, ...

Implementation
sparseness, with(out) using projection properties,
optimized, robustness, ...
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Comparison of Deflation and Additive Coarse
Grid Correction

PD = I − AZE−1Z T PC = I + σZE−1Z T

M−1PD = M−1 − M−1AZE−1Z T PCM−1 = M−1 + σZE−1Z T

where E = Z T AZ .

Work per iteration:

1 matrix vector product

1 preconditioner vector product

1 coarse grid operator

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods



D
el

ft
In

st
itu

te
of

A
pp

lie
d

M
at

he
m

at
ic

s

Introduction
A parallel Krylov method for finite element problems

Deflated ICCG (DICCG)
Comparison of second-level preconditioners

Conclusions

Comparison for eigenvectors

Definition
Eigenpair {λi , vi}, so Avi = λivi with 0 < λ1 ≤ . . . ≤ λn.
Take Z = [v1 . . . vr ].

Theorem
- the spectrum of PDA is {0, . . . , 0, λr+1, . . . , λn}

- the spectrum of PCA is {σ + λ1, . . . , σ + λr , λr+1, . . . , λn}

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Comparison for eigenvectors

Corollary

condeff (PDA) =
λn

λr+1
≤

max{λn, σ + λr}

min{λr+1, σ + λ1}
= cond(PCA)

The eigenvalues of PCA has a worse distribution than the
eigenvalues of PDA

Conclusion
Deflation is asymptotically better than additive coarse grid
correction!
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Results for eigenvectors

The eigenvalues of A are 1, 2, 3, . . . , 99, 100. The eigenvectors
v1, . . . , v10 are used as projection vectors.
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Results for eigenvectors

The eigenvalues of A are 10−6, . . . 10−6, 11, 12, 13, . . . , 99, 100.
The eigenvectors v1, . . . , v10 are used as projection vectors.
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Comparison for general projection vectors

Definition

PCM−1 := M−1 + σZE−1Z T .

Theorem
Let A and M be symmetric positive definite. Let Z ∈ R

n×r with
rankZ = r . Let E := Z T AZ . Then

λn(M−1PDA) ≤ λn(PCM−1A),

λr+1(M
−1PDA) ≥ λ1(PCM−1A).

Corollary
DICCG converges faster than CICCG for general projection
vectors.

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Comparison of Deflation and the Balancing
preconditioner

M−1PD = M−1 − M−1AZE−1Z T

PB = (I − ZE−1Z T A)M−1(I − AZE−1Z T ) + ZE−1Z T

PB = PT
D M−1PD + ZE−1Z T

Work per iteration:

Deflation Balancing
(depends on implementation)

matrix vector product 1 3
precon vector product 1 1
coarse grid operator 1 2

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Comparison for general vectors

Take Z = [v1 . . . vr ] and M = I.

Theorem
- the spectrum of PDA is {0, . . . , 0, λr+1, . . . , λn}

- the spectrum of PBA is {1, . . . , 1, λr+1, . . . , λn}

condeff (PDA) =
λn

λr+1
≤

max{λn, 1}
min{λr+1, 1}

= cond(PBA)

Deflation is asymptotically better than Balancing!

Vuik, Nabben and Tang Deflation acceleration of block ILU preconditioned methods
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Results for eigenvectors v1, . . . , v10

The eigenvalues of A are 0.01, 0.02, 0.03, . . . , 0.99, 1.
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Results for eigenvectors v1, . . . , v10

The eigenvalues of A are 0.1, 0.2, 0.3, . . . , 9.9, 10.
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Results for eigenvectors v1, . . . , v10

The eigenvalues of A are 1, 2, 3, . . . , 99, 100.
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Conclusions

Block preconditioned Krylov methods combined with
Deflation, additive coarse grid correction, or Balancing are
well parallelizable (scalable, good speed up).

The choice of the projection vectors is important for the
success of a projection method.

Deflation needs less iterations than additive coarse grid
correction, and uses the same amount of work per iteration

Deflation uses less (approximately the same) iterations as
Balancing, but uses less work per iteration.
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http://ta.twi.tudelft.nl/nw/users/vuik/pub it def.html
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