On iterative solvers combined with projected Newton methods for reacting flow problems

#### C. Vuik<sup>1</sup> S. van Veldhuizen<sup>1</sup> C.R. Kleijn<sup>2</sup>

<sup>1</sup>Delft University of Technology Delft Institute of Applied Mathematics J.M. Burgerscentrum

<sup>2</sup>Delft University of Technology Department of Multi Scale Physics J.M. Burgerscentrum

9th IMACS International Symposium on Iterative Methods in Scientific Computing Lille, France



### Outline

1



- Chemical Vapor Deposition
- Transport Model
- 2 Numerical Methods
  - Properties
  - Positivity
  - Nonlinear Solvers
  - Linear Solvers
- 3 Numerical Results
  - 2D
  - 3D

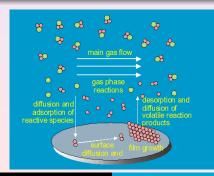




Chemical Vapor Deposition Transport Model

### Chemical Vapor Deposition

- Transforms gaseous molecules into high purity, high performance solid materials
- Thin film, or powder
- Thermal energy drives (gas phase and surface) reactions



Van Veldhuizen, Vuik and Kleijn

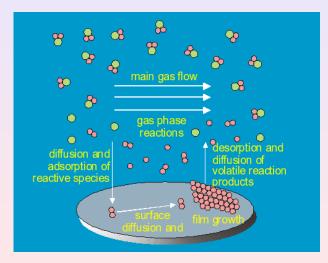


On iterative solvers combined with projected Newton ...

Chemical Vapor Deposition (CVD)

Numerical Methods Numerical Results Conclusions Chemical Vapor Deposition Transport Model

### **Chemical Vapor Deposition**



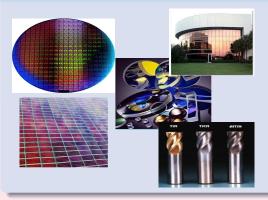
**ŤU**Delft

Conclusions

Chemical Vapor Deposition Transport Model

### **Chemical Vapor Deposition**

#### **Applications**



- Semiconductors
- Solar cells
- Optical, mechanical and decorative coatings

Chemical Vapor Deposition Transport Model

### Transport Model for CVD

#### **Mathematical Model**

Conservation of:

- Total mass: Continuity equation
- Momentum: Navier-Stokes equations
- Energy: Transport eqn for thermal energy

Closed by:

- Ideal gas law
- Transport of species i

$$\frac{\partial(\rho\omega)}{\partial t} = \nabla \cdot (\rho \mathbf{v}\omega) + \nabla \cdot \mathbf{j}_i + m \sum_{k=1}^{\text{\#reactions}} \nu_k \mathbf{R}_k^G$$

**ŤU**Delft

Chemical Vapor Deposition Transport Model

### Transport Model for CVD

#### **Reaction Rate**

Net molar gas phase reaction rate

$$R_i^{G} = A_i \cdot T^{\beta_i} \cdot e^{-\frac{E_i}{RT}} \cdot F(P, T, \omega_1, \dots, \omega_i, \dots, \omega_N)$$

Surface reaction rate

$$R_i^{\rm S} = \frac{\gamma_i}{1 + \gamma_i/2} \cdot G(P, T, \omega_i)$$

- Time constants of slowest and fastest reactions differ orders of magnitude
- Stiff nonlinear system of species equations



Properties Positivity Nonlinear Solvers Linear Solvers

### **Numerical Methods**

#### Goal

- Time accurate transient solution
- Start up & shut down cycli

#### Properties

- Stiff Problem  $\rightarrow$  Stable Time Integration
- Positivity (= preservation of non-negativity): Negative Species can blow up of the solution
- Efficiency / Robustness
- Method of Lines approach

**ŤU**Delft

Properties Positivity Nonlinear Solvers Linear Solvers



### Positivity

#### Mass fractions

A natural property for mass fractions is their non-negativity

#### Positivity of mass fractions should hold for ...

- Model equations
- Spatial discretization: Hybrid scheme Introduces locally first order upwinding
- Time integration
- Iterative solvers: (Non)linear solver

Properties Positivity Nonlinear Solvers Linear Solvers



### Positivity for ODE systems

#### **Euler Backward**

• 
$$W_{n+1} - W_n = \tau F(t_{n+1}, W_{n+1})$$

Unconditionally stable (A-stable/ stiffly stable)

#### Theorem (Hundsdorfer, 1996)

Euler Backward is positive for any step size  $\tau$ 

#### Theorem (Bolley and Crouzeix, 1970)

Any unconditionally positive time integration is at most first order accurate

Properties Positivity Nonlinear Solvers Linear Solvers



### Positivity for ODE systems

#### With respect to time integration we conclude ...

- Restrict time integration to EB
- How to deal with huge nonlinear systems?
- How to maintain the unconditional positivity within nonlinear solver?

Properties Positivity Nonlinear Solvers Linear Solvers

### **Nonlinear Solvers**

Globalized Inexact Newton to solve F(x) = 0

Let  $x_0$  be given. FOR k = 1, 2, ... until 'convergence' Find some  $\eta_k \in [0, 1)$  and  $s_k$  that satisfy

$$\|\boldsymbol{F}(\boldsymbol{x}_k) + \boldsymbol{F}'(\boldsymbol{x}_k)\boldsymbol{s}_k\| \leq \eta_k \|\boldsymbol{F}(\boldsymbol{x}_k)\|.$$

WHILE  $||F(x_k + s_k)|| > (1 - \alpha(1 - \eta_k))||F(x_k)||$  DO Choose  $\lambda \in [\lambda_{\min}, \lambda_{\max}]$ Set  $s_k \leftarrow \lambda s_k$  and  $\eta_k \leftarrow 1 - \lambda(1 - \eta_k)$ ENDWHILE

Set  $x_{k+1} = x_k + s_k$ . ENDFOR



Properties Positivity Nonlinear Solvers Linear Solvers

### **Nonlinear Solvers**

Globalized Inexact Projected Newton to solve F(x) = 0

Let  $x_0$  be given. FOR k = 1, 2, ... until 'convergence' Find some  $\eta_k \in [0, 1)$  and  $s_k$  that satisfy

$$\|\boldsymbol{F}(\boldsymbol{x}_k) + \boldsymbol{F}'(\boldsymbol{x}_k)\boldsymbol{s}_k\| \leq \eta_k \|\boldsymbol{F}(\boldsymbol{x}_k)\|.$$

WHILE  $\|F(\mathcal{P}(x_k + s_k))\| > (1 - \alpha(1 - \eta_k))\|F(x_k)\|$  DO Choose  $\lambda \in [\lambda_{\min}, \lambda_{\max}]$ Set  $s_k \leftarrow \lambda s_k$  and  $\eta_k \leftarrow 1 - \lambda(1 - \eta_k)$ ENDWHILE

Set  $x_{k+1} = \mathcal{P}(x_k + s_k)$ . **ENDFOR** 



Properties Positivity Nonlinear Solvers Linear Solvers

### **ŤU**Delft

### **Nonlinear Solvers**

#### Note that

• Forcing term  $\eta_k$  in

$$\|\boldsymbol{F}(\boldsymbol{x}_k) + \boldsymbol{F}'(\boldsymbol{x}_k)\boldsymbol{s}_k\| \leq \eta_k \|\boldsymbol{F}(\boldsymbol{x}_k)\|.$$

is a certain accuracy in solving  $F'(x_k)s_k = -F(x_k)$ 

- How to choose  $\eta_k$ ?
- $\eta_k$  too small  $\Rightarrow$  oversolving
- Ideal: Based on residual norms as

$$\eta_k = \gamma \frac{\|\boldsymbol{F}(\boldsymbol{x}_k)\|^2}{\|\boldsymbol{F}(\boldsymbol{x}_{k-1})\|^2}$$

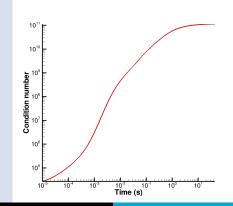
Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

#### **Properties**

Huge condition numbers due to chemistry terms



Van Veldhuizen, Vuik and Kleijn

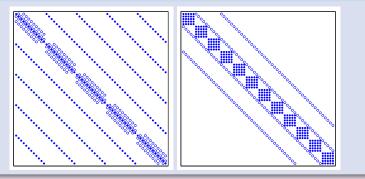
On iterative solvers combined with projected Newton ...

Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

# Lexicographic ordering (left) and Alternate blocking per grid point(right)



Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

#### **Iterative Linear Solver**

- Right preconditioned BiCGStab
- 'Heavy' chemistry terms  $\rightarrow$  diagonal blocks
- Incomplete Factorization: ILU(0)

| •               | lexico  | alternate blocking |
|-----------------|---------|--------------------|
| Number of       | graphic | per gridpoint      |
| F               | 220     | 197                |
| Newton iters    | 124     | 111                |
| Linesearch      | 12      | 7                  |
| Rej. time steps | 0       | 0                  |
| Acc. time steps | 36      | 36                 |
| CPU Time        | 400     | 300                |
| linear iters    | 444     | 346                |

Van Veldhuizen, Vuik and Kleijn

On iterative solvers combined with projected Newton ...

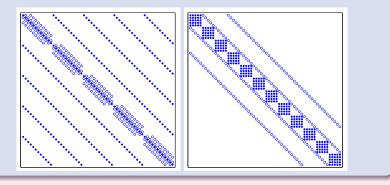
Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

#### Preconditioners: Lumping

#### Important: Lumping per species



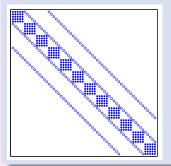
Van Veldhuizen, Vuik and Kleijn On iterative solvers combined with projected Newton ...

Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

#### Preconditioners: Block Diagonal



- 'natural' blocking over species
- series of uncoupled systems → LU factorization per subsystem

Properties Positivity Nonlinear Solvers Linear Solvers



### Preconditioned Krylov solvers

```
Preconditioners: Block D-ILU
Put D_{ii} = A_{ii} for all i = 1, \ldots, n
FORi = 2, . . . , n
   IF mod (i, nr) \neq 0 THEN
       D_{i+1,i+1} = D_{i+1,i+1} - A_{i+1,i}D_{ii}^{-1}A_{i,i+1}
   ENDIF
   \mathbf{IF}i + nr < \mathbf{s} \cdot \mathbf{n} THEN
       D_{i+nr,i+nr} = D_{i+nr,i+nr} - A_{i+nr,i}D_{ii}^{-1}A_{i,i+nr}
   ENDIF
ENDFOR
```

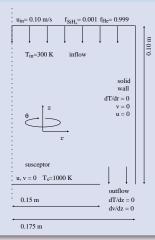
- Computation of  $D_{ii}^{-1}A_{i,i+1}$
- Gauss-Jordan decomposition of D<sub>ii</sub>

2D

Conclusions

### Kleijn's Benchmark Problem

#### **Computational Domain**



- Axisymmetric
- O.1 mole% SiH₄ at the inflow
- Rest is carrier gas helium He
- Susceptor does not rotate

**TUDelft** 

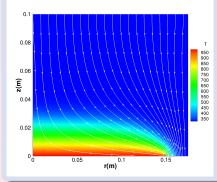


2D

3D

### Kleijn's Benchmark Problem

#### **Computational Domain**



- Grid sizes: 35 × 32 up to 70 × 82 grid points
- Temperature: Inflow 300 K Susceptor 1000 K
- Uniform velocity at inflow

2D 3D

sults

### Kleijn's Benchmark Problem

#### Chemistry Model: 16 species, 26 reactions [1]

- Above heated wafer SiH<sub>4</sub> decomposes into SiH<sub>2</sub> and H<sub>2</sub>
- Chain of 25 homogeneous gas phase reactions
- Including the carrier gas the gas mixture contains 17 species, of which 14 contain silicon atoms
- Irreversible surface reactions at the susceptor leads to deposition of solid silicon

 M.E. Coltrin, R.J. Kee and G.H. Evans, A Mathematical Model of the Fluid Mechanics and Gas-Phase Chemistry in a Rotating Chemical Vapor Deposition Reactor, J. Electrochem. Soc., 136, (1989)



Conclusions

2D 3D

### **ŤU**Delft

### **Numerical Results**

| Integration statistics: $35 \times 32$ grid |                          |                              |                          |                               |        |  |  |
|---------------------------------------------|--------------------------|------------------------------|--------------------------|-------------------------------|--------|--|--|
|                                             | ILU(0)                   | Lumped                       | block                    | block                         | direct |  |  |
|                                             |                          | Jac                          | DILU                     | diag                          | solver |  |  |
| Newton                                      | 108 ( <mark>101</mark> ) | 149 ( <mark>127</mark> )     | 104 ( <mark>93</mark> )  | 1,379 ( <mark>125</mark> )    | 94     |  |  |
| linesearch                                  | 9 ( <mark>6</mark> )     | 16                           | 6 ( <mark>4</mark> )     | 7 ( <mark>16</mark> )         | 11     |  |  |
| Negative                                    | 1 ( <mark>0</mark> )     | 3 ( <mark>0</mark> )         | 2 ( <mark>0</mark> )     | 403 ( <mark>0</mark> )        | 1      |  |  |
| Acc. steps                                  | 38 ( <mark>36</mark> )   | 41 ( <mark>36</mark> )       | 39 ( <mark>36</mark> )   | 724 ( <mark>36</mark> )       | 38     |  |  |
| lin iters                                   | 848 ( <mark>825</mark> ) | 7,927 ( <mark>5,819</mark> ) | 838 ( <mark>718</mark> ) | 13,371 ( <mark>6,275</mark> ) |        |  |  |
| CPU                                         | 300 ( <mark>270</mark> ) | 530 ( <mark>410</mark> )     | 320 ( <mark>270</mark> ) | 3,610 ( <mark>450</mark> )    | 6,500  |  |  |

- Black: Globalized Inexact Newton
- Red: Globalized Inexact Projected Newton

Conclusions

### Numerical Results

#### Integration statistics: $70 \times 82$ grid

| Preconditioner | ILU(0)                        | block D-ILU                  |
|----------------|-------------------------------|------------------------------|
| Newton iter    | 395 ( <mark>351</mark> )      | 299 ( <mark>306</mark> )     |
| Negative       | 3( <mark>0</mark> )           | 0                            |
| Acc time step  | 41 ( <mark>37</mark> )        | 37                           |
| line search    | 136 ( <mark>128</mark> )      | 101 ( <mark>96</mark> )      |
| lin iters      | 11,100 ( <mark>8,895</mark> ) | 2,144 ( <mark>2,290</mark> ) |
| CPU time (sec) | 5,420 ( <mark>6,000</mark> )  | 4,175 ( <mark>4,350</mark> ) |

- Black: Globalized Inexact Newton 0
- Red: Globalized Inexact Projected Newton
- Direct solver is not feasable

**ŤU**Delft

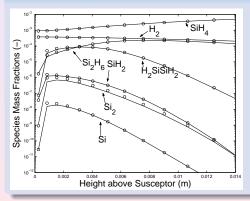
2D

Conclusions



### Kleijn's Benchmark Problem

#### Validation: Species mass fraction along the symmetry axis



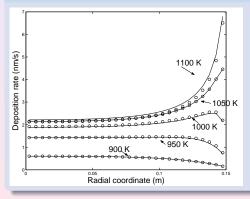
- solid: Kleijn's solutions
- circles: our solutions

2D 3D

**ŤU**Delft

### Kleijn's Benchmark Problem

#### Validation: Radial profiles of total steady state deposition rate



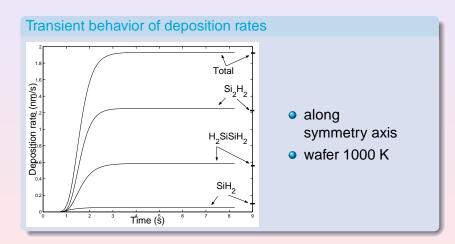
- wafer temperature from 900 K up to 1100 K
- solid: Kleijn's solutions
- circles: our solutions

2D 3D

Conclusions

**ŤU**Delft

### Kleijn's Benchmark Problem

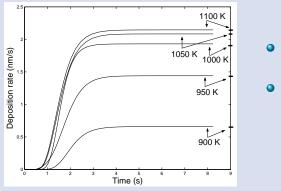


2D

3D

### Kleijn's Benchmark Problem

#### Transient behavior of deposition rates



 along symmetry axis

 wafer temperatures from 900 up to 1100 K

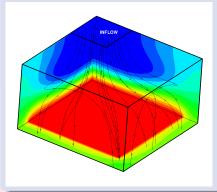


**ŤU**Delft

2D 3D

### 3D Results on Kleijn's Benchmark Problem

#### **Computational Domain**



- Grid sizes:  $35 \times 32 \times 35$
- Temperature: Inflow 300 K Susceptor 1000 K
- Uniform velocity at inflow



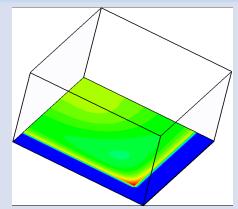
**ŤU**Delft

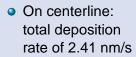
2D 3D

#### 3D

## 3D Results on Kleijn's Benchmark Problem

#### Total deposition rate





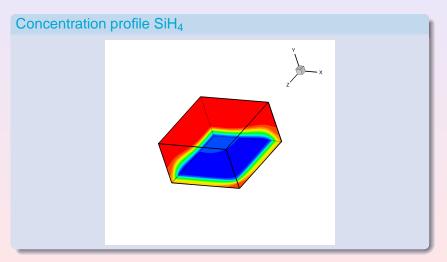
 Compare with 2D results: 2.43 nm/s along symmetry axis

2D 3D

Conclusions

### **ŤU**Delft

### 3D Results on Kleijn's Benchmark Problem



Van Veldhuizen, Vuik and Kleijn On iterative solvers combined with projected Newton ...

Conclusions

2D

3D

**ŤU**Delft

### **Numerical Results**

#### Integration statistics: $35 \times 32 \times 35$ grid

|                | ILU(0) | Lumped | block  | block  |
|----------------|--------|--------|--------|--------|
|                |        | Jac    | DILU   | diag   |
| Newton         | 239    | 332    | 156    | 327    |
| linesearch     | 51     | 31     | 20     | 29     |
| Newt Diver     | 3      | 0      | 0      | 0      |
| Acc. time step | 44     | 43     | 43     | 43     |
| lin iters      | 3,196  | 17,472 | 2,481  | 18,392 |
| CPU            | 20,100 | 28,000 | 17,500 | 29,000 |

#### Without Projected Newton not feasible



### Conclusions and Future Research

#### Conclusions

- Globalized Inexact Projected Newton maintains the unconditional positivity of Euler Backward
- Alternate blocking per grid point is more effective
- Easy preconditioners are effective for 2D and 3D problems
- Chemistry source terms should be in the preconditioner

#### **Future Research**

- More realistic chemistry/surface chemistry models
- Steady state solver



### **References and Contact Information**

#### References

- S. VAN VELDHUIZEN, C. VUIK AND C.R. KLEIJN, A Class of Projected Newton Methods to Solve Laminar Reacting Gas Flow Problems, J. Sci. Comput., submitted, preprint available as Technical Report 08-03 @ TU Delft, (2008)
- "—", Comparison of ODE Methods for Laminar Reacting Gas Flow Simulations, Num. Meth. Part. Diff. Eq., to appear, (2008)
- "—", Comparison of Numerical Methods for Transient CVD Simulations, Surf. and Coat. Technol., pp. 8859-8862, (2007)
- "—", Numerical Methods for Reacting Gas Flow Simulations, Internat. J. Multiscale Eng., 5, pp. 1-10, (2007)



### **References and Contact Information**

#### **Contact Information**

- Email: c.vuik@tudelft.nl
- URL: http://ta.twi.tudelft.nl/users/vuik/