Linear solvers for large algebraic systems from structural mechanics

Symposium of Advances in Contact Mechanics: a tribute to Prof J. J. Kalker

Delft / EWI
prof. dr. ir. c. Vuik October 23, 2008 1

Outline

- Structural mechanics
- Computational framework
- Finite element discretization
- Numerical linear algebra
- Overview numerical methods for linear systems
- Parallel direct solver
- Combining methods to create new solver
- Test case
- Discussion

How to compute deformation? Force balance

- Forces should be in balance,
$\int_{\Omega} \operatorname{div}(\sigma)+\mathbf{f}-\rho \mathbf{g} d \Omega=0$
internal force σ, external force \mathbf{f}, gravitation \mathbf{g}
- Residual when out of balance,

$$
\mathbf{r}=\operatorname{div}(\sigma)+\mathbf{f}-\rho \mathbf{g}
$$

How to compute deformation? Virtual work

- Define virtual work,

$$
\delta W=\int_{v} \mathbf{r} \cdot \delta \mathbf{u} d v
$$

- Equilibrium

$$
\delta W(\mathbf{X})=\delta W_{\text {int }}(\mathbf{X})-\delta W_{\text {ext }}(\mathbf{X})=0
$$

How to compute deformation? Linearized virtual work

- First order Taylor,

$$
\delta W\left(\mathbf{X}_{0}\right)+D_{\Delta u}\left[\delta W\left(\mathbf{X}_{0}\right)\right]=0
$$

- Linearized virtual work

$$
\begin{array}{r}
\int_{V}\left(\nabla_{0} \Delta \mathbf{u} \cdot \mathbf{S}\right): \nabla_{0} \delta \mathbf{v} d V+\int_{V}\left(\nabla_{0} \Delta \mathbf{u}: \mathbf{F} \cdot \mathbb{C} \cdot \mathbf{F}^{T}\right): \nabla_{0} \delta \mathbf{v} d V= \\
\delta \mathbf{v} \cdot \mathrm{f}_{e x t}-\int_{V} \mathbf{P}: \nabla_{0} \delta \mathbf{v} d V
\end{array}
$$

How to compute deformation? Material response

- Three material properties,
- (Hyper) elasticity
- Plasticity (permanent deformation)
- Viscosity (permanent deformation)

How to compute deformation? Non-linear material response

Finite element discretization FE mesh

Finite element discretization Tetrahedral elements

- Introduce local coordinate system,
$(x, y, z) \rightarrow(\xi, \eta, \zeta)$
- Transformation between local and global coordinates,

$$
\frac{d}{d \xi}=J \frac{d}{d x}
$$

Finite element discretization Shape functions

- 1D Example with linear shape functions,

$$
x=N_{1}(\xi) x_{1}+N_{2}(\xi) x_{2}
$$

- For 3D case,

$$
\mathbf{x}=\sum_{i=1}^{4} \mathbf{N}_{i}(\xi, \eta, \zeta) \cdot \mathbf{x}_{i}
$$

- For stability and accuracy higher order shape functions necessary

Finite element discretization Numerical integration

- Use Gauss point(s) for numerical integration,

$$
\int_{\Omega} f d \Omega \stackrel{=}{=} f\left(\xi_{g}, \eta_{g}, \zeta_{g}\right)|J| \int_{\Omega} d \Omega
$$

Finite element discretization Stiffness matrix

- Discretized, linearized virtual work,

$$
K \Delta \mathbf{u}=\mathbf{f}_{e x t}-\mathbf{f}_{i n t}
$$

Finite element discretization Stiffness matrix

- Properties of K,
- Symmetric
- Positive definite
- Sparse
- No specific pattern of non-zero matrix entries
- Large differences in entry values due to material properties
- Changes due to non-linear material properties

How to compute deformation? Balancing of forces algorithm

Problems with algorithm Scale

Number of elements:
1.890.057

Number of nodes:
307.735

Number of non zero elements in stiffnessmatrix:
21.296.523

15

TUDelft

Problems with algorithm Accuracy and approximation

Numerical methods Overview

- (Parallel) Direct solver
- Iterative solvers,
- Preconditioning
- CG method
- Deflation, Domain Decomposition of Multigrid?

Parallel direct solver Definition

- Direct solver,

$$
x=A^{-1} b
$$

- Matrix cannot be singular or ill conditioned, this leads to inaccurate solutions
- Large (3D) models yield large linear systems, serial direct solvers lack CPU power and memory

Parallel direct solver MUMPS

- Solution? Go parallel! Spread work over computing nodes. Adding more nodes implies more CPU power and memory.
- MUMPS project: public domain package and developed by CERFACS, graal.ens-lyon.fr/MUMPS/

Parallel direct solver MUMPS

TUDelft

Iterative methods Basics

- Solve,

$$
A x=b
$$

- Use sequence of approximations of solution x,

$$
x_{0}, x_{1}, x_{2}, \ldots, x_{k}
$$

where,

$$
x_{k+1}=x_{k}+M^{-1}\left(b-A x_{k}\right)
$$

- Choice of M defines iterative method

Iterative methods Available methods

- Splitting based methods $(M=N-A)$,
- Jacobi
- Gauss-Seidel
- SSOR
- Krylov subspace methods
- CG
- GMRES
- Multigrid

Iterative methods Preconditioning

- Condition number,

$$
\kappa_{p}(A)=\|A\|_{p}\left\|A^{-1}\right\|_{p}
$$

- For (symmetric) SPD matrices,
$\kappa_{p}(A)=\frac{\left|\lambda_{\max }\right|}{\left|\lambda_{\min }\right|}$
- Improve condition of matrix,

$$
M^{-1} A x=M^{-1} b
$$

Iterative methods Preconditioning

- Preconditioner is approximation of original matrix
- Matrix M can be any constant linear solver
- Many choices,
- Incomplete LU or Cholesky decomposition,
- Basic iterative methods (GS, Jacobi)
- Multigrid
- Domain decomposition
- Deflation

Iterative methods Conjugate gradient (CG)

- Krylov subspace,

$$
x_{0}+\operatorname{span}\left\{M^{-1} r_{0}, M^{-1} A\left(M^{-1} r_{0}\right), \ldots,\left(M^{-1} A\right)^{i-1}\left(M^{-1} r_{0}\right)\right\}
$$

- Good performance for well conditioned SPD matrices
- Slow converging components corresponds to smallest eigenvalues of A
- Preconditioner necessary for ill conditioned systems

Iterative methods Multigrid

- Idea: Approximation of (smooth) error of the solution on coarser grids. Back propagate error to fine grid:
$A x=b \rightarrow \Delta x=x-\tilde{x}$
$r_{h}=A_{h} \Delta x_{h} \rightarrow I_{h}^{H} \rightarrow r_{H}=A_{H} \Delta x_{H}$
$\tilde{x}_{h}^{k+1}=\tilde{x}_{h}^{k}+I_{H}^{h} \Delta x_{H}$
- Benefit: Reduction of size the system that has to be solved with direct solver.

Iterative methods Multigrid

- How to choose grid operators I_{h}^{H}, I_{H}^{h} ?
- How to choose coarse grid cells on unstructured grids?

Iterative solvers Domain decomposition

- Divide large problem into subdomains, divide work load and easy parallelizable.
- Rewrite original system,

$$
\begin{aligned}
& \Omega_{i}, \forall i \in\{1,2, \ldots, s\} \\
& A\binom{\mathbf{x}}{\mathbf{y}}=\binom{\mathbf{f}}{\mathbf{g}} \text { with } A=\left(\begin{array}{ll}
B & E \\
F & C
\end{array}\right)
\end{aligned}
$$

where \mathbf{y}, g correspond to interface nodes

Iterative solvers Domain decomposition

- Schur complement S,

$$
\begin{aligned}
\left(C-F B^{-1} E\right) \mathbf{y} & =\mathbf{g}-F B^{-1} \mathbf{f} \\
S \mathbf{y} & =\mathbf{g}^{\prime}
\end{aligned}
$$

- Solve y and obtain x from,

$$
\mathbf{x}=B^{-1}(\mathbf{f}-E \mathbf{y})
$$

Iterative solvers Domain decomposition

- How to choose subdomains?
- How to solve on subdomains?

Iterative solvers Deflation

- Filter out the eigenvalues that belong to the slow converging components of for e.g. the CG method
- Deflation components,
$Z \quad \in \mathbb{R}^{n \times k}, \quad k<n-d, \quad$ deflation subspace matrix
$E \quad=Z^{T} A Z \in \mathbb{R}^{k \times k}$, inversion Galerkin matrix or coarse matrix
$Q \quad=Z E^{-1} Z^{T} \in \mathbb{R}^{n \times n}$, correction matrix
$P=I-A Q \in \mathbb{R}^{n \times n}$, deflation matrix
$P A x=P b$
d, number of zero eigenvalues
k, number of deflation vectors

Iterative solvers Deflation

- Preferably the deflation vectors are the eigenvectors corresponding to the smallest eigenvalues (think of condition number)
- Computation of deflation vectors is expensive, use approximations,
- Physical : interface elements with high discontinuities
- Analytical : use information CG, previous time steps, FE discretization etc.

Hybrid solver Combining numerical methods

Test case

Compression

Test case

Compression

Test case

 Deflation + CG + preconditioning

Test case Deflation + CG + preconditioning

Future research People

- Civil Engineering (group Scarpas),
- A. Scarpas
- C. Kasbergen
- Applied Mathematics (group Vuik),
- C. Vuik
- M.B van Gijzen
- T.B Jönsthövel

Discussion Q+A

TUDelft

