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• Forces should be in balance,

internal force   , external force  ,
gravitation

• Residual when out of balance,

How to compute deformation?
Force balance
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∫

Ω
div(σ) + f − ρgdΩ =0

r = div(σ) + f − ρg

σ
g

f



• Define virtual work,

• Equilibrium

How to compute deformation?
Virtual work
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How to compute deformation?
Linearized virtual work

• First order Taylor,

• Linearized virtual work
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How to compute deformation?
Material response

• Three material properties,
• (Hyper) elasticity
• Plasticity (permanent deformation)
• Viscosity (permanent deformation)
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How to compute deformation?
Non-linear material response
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Finite element discretization
FE mesh
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Finite element discretization
Tetrahedral elements
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• Introduce local coordinate
system,

• Transformation between
local and global
coordinates,

(x, y, z)→ (ξ, η, ζ)

d

dξ
= J

d

dx



Finite element discretization
Shape functions

• 1D Example with linear shape functions,

• For 3D case,

• For stability and accuracy
higher order shape functions necessary
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Finite element discretization
Numerical integration

• Use Gauss point(s) for numerical integration,
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∫

Ω
fdΩ=̃f (ξg, ηg, ζg) |J |

∫

Ω
dΩ



Finite element discretization
Stiffness matrix

• Discretized, linearized virtual work,
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K∆u = fext − fint



Finite element discretization
Stiffness matrix
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• Properties of    ,
• Symmetric
• Positive definite
• Sparse
• No specific pattern of non-zero matrix entries
• Large differences in entry values due to material 

properties
• Changes due to non-linear material properties



How to compute deformation?
Balancing of forces algorithm
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MESH

Material Models

Assemble, 

Solve, 

Compute internal 
force (Newton-Raphson)

Apply load

Newton-
Raphson

Newmark 
(dynamic)

Linear solver



Problems with algorithm
Scale
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Number of elements: 
1.890.057

Number of nodes: 
307.735

Number of non zero elements in 
s:ffnessmatrix: 
21.296.523



Problems with algorithm
Accuracy and approximation
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Numerical methods
Overview

• (Parallel) Direct solver
• Iterative solvers,

• Preconditioning
• CG method
• Deflation, Domain Decomposition of Multigrid?
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Parallel direct solver
Definition
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• Direct solver,

• Matrix cannot be singular or ill conditioned, this leads 
to inaccurate solutions

• Large (3D) models yield large linear systems, serial 
direct solvers lack CPU power and memory

x = A−1b



Parallel direct solver
MUMPS
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• Solution? Go parallel! Spread work over computing 
nodes. Adding more nodes implies more CPU power 
and memory.

• MUMPS project: public domain package and developed 
by CERFACS, graal.ens-lyon.fr/MUMPS/



Parallel direct solver
MUMPS
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• Solve,

• Use sequence of approximations of solution   ,

where, 

• Choice of    defines iterative method

Iterative methods
Basics
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Ax = b
x

x0, x1, x2, ..., xk

xk+1 = xk + M−1 (b−Axk)
M



Iterative methods
Available methods
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• Splitting based methods (                 ),
• Jacobi
• Gauss-Seidel 
• SSOR

• Krylov subspace methods
• CG
• GMRES

• Multigrid

M = N −A



• Condition number,

• For (symmetric) SPD matrices,

• Improve condition of matrix,

Iterative methods
Preconditioning
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M−1Ax = M−1b

κp(A) =
|λmax|
|λmin|



Iterative methods
Preconditioning

• Preconditioner is approximation of original matrix 
• Matrix     can be any constant linear solver
• Many choices,

• Incomplete LU or Cholesky decomposition,
• Basic iterative methods (GS, Jacobi)
• Multigrid
• Domain decomposition
• Deflation
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M



Iterative methods
Conjugate gradient (CG)

• Krylov subspace,

• Good performance for well conditioned SPD matrices
• Slow converging components corresponds to smallest 

eigenvalues of A
• Preconditioner necessary for ill conditioned systems
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x0 + span
{

M−1r0, M
−1A

(
M−1r0

)
, ...,

(
M−1A

)i−1 (
M−1r0

)}



Iterative methods
Multigrid

• Idea: Approximation of (smooth) error of the solution 
on coarser grids. Back propagate error to fine grid:

• Benefit: Reduction of size the system that has to be 
solved with direct solver.
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Ax = b→ ∆x = x− x̃

rh = Ah∆xh → IH
h → rH = AH∆xH

x̃k+1
h = x̃k

h + Ih
H∆xH



Iterative methods
Multigrid

• How to choose grid operators           ?

• How to choose coarse grid cells on unstructured grids?
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IH
h , Ih

H



Iterative solvers
Domain decomposition

• Divide large problem into subdomains, divide work 
load and easy parallelizable.

• Rewrite original system,

where       correspond to interface nodes
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Ωi, ∀i ∈ {1, 2, ..., s}

A

(
x
y

)
=

(
f
g

)
with A =

(
B E
F C

)

y,g



Iterative solvers
Domain decomposition

• Schur complement   ,

• Solve    and obtain   from,
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(
C − FB−1E

)
y = g − FB−1f

Sy = g′

S

y x
x = B−1 (f − Ey)



Iterative solvers
Domain decomposition

• How to choose subdomains?

• How to solve on subdomains?
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• Filter out the eigenvalues that belong to the slow 
converging components of for e.g. the CG method

• Deflation components,

Iterative solvers
Deflation
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Z ∈ Rn×k, k < n− d, deflation subspace matrix
E = ZT AZ ∈ Rk×k, inversion Galerkin matrix or coarse matrix
Q = ZE−1ZT ∈ Rn×n, correction matrix
P = I −AQ ∈ Rn×n, deflation matrix
PAx = Pb

d, number of zero eigenvalues
k, number of deflation vectors



Iterative solvers
Deflation

• Preferably the deflation vectors are the eigenvectors 
corresponding to the smallest eigenvalues (think of 
condition number)

• Computation of deflation vectors is expensive, use 
approximations,
• Physical : interface elements with high 

discontinuities
• Analytical : use information CG, previous time 

steps, FE discretization etc.
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Hybrid solver
Combining numerical methods
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Test case
Compression
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Test case
Compression
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Test case
Deflation + CG + preconditioning
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Test case
Deflation + CG + preconditioning
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Future research
People
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• Civil Engineering (group Scarpas),
• A. Scarpas
• C. Kasbergen

• Applied Mathematics (group Vuik),
• C. Vuik
• M.B van Gijzen
• T.B Jönsthövel



Discussion
Q+A
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