Linear solvers for large algebraic systems from structural mechanics

Symposium of Advances in Contact Mechanics: a tribute to Prof J. J. Kalker

Delft / EWI prof. dr. ir. C. Vuik October 23, 2008

• Department of Applied Mathematical Analysis

Delft University of Technology

Outline

- Structural mechanics
 - Computational framework
 - Finite element discretization
- Numerical linear algebra
 - Overview numerical methods for linear systems
 - Parallel direct solver
 - Combining methods to create new solver
- Test case
- Discussion

How to compute deformation? Force balance

• Forces should be in balance,

$$\int_{\Omega} div(\sigma) + \mathbf{f} - \rho \mathbf{g} d\Omega = 0$$

• Residual when out of balance,

$$\mathbf{r} = div(\sigma) + \mathbf{f} - \rho \mathbf{g}$$

How to compute deformation? Virtual work

• Define virtual work,

$$\delta W = \int_{v} \mathbf{r} \cdot \delta \mathbf{u} dv$$

• Equilibrium

$$\delta W (\mathbf{X}) = \delta W_{int} (\mathbf{X}) - \delta W_{ext} (\mathbf{X}) = 0$$

How to compute deformation? Linearized virtual work

• First order Taylor,

 $\delta W\left(\mathbf{X}_{0}\right) + D_{\Delta u}\left[\delta W\left(\mathbf{X}_{0}\right)\right] = 0$

• Linearized virtual work

$$\int_{V} (\nabla_{0} \Delta \mathbf{u} \cdot \mathbf{S}) : \nabla_{0} \delta \mathbf{v} dV + \int_{V} (\nabla_{0} \Delta \mathbf{u} : \mathbf{F} \cdot \mathbb{C} \cdot \mathbf{F}^{T}) : \nabla_{0} \delta \mathbf{v} dV = \delta \mathbf{v} \cdot \mathbf{f}_{ext} - \int_{V} \mathbf{P} : \nabla_{0} \delta \mathbf{v} dV$$

How to compute deformation? Material response

- Three material properties,
 - (Hyper) elasticity
 - Plasticity (permanent deformation)
 - Viscosity (permanent deformation)

How to compute deformation? Non-linear material response

Finite element discretization FE mesh

Finite element discretization Tetrahedral elements

 Introduce local coordinate system,

 $(x, y, z) \to (\xi, \eta, \zeta)$

 Transformation between local and global coordinates,

$$\frac{d}{d\xi} = J\frac{d}{dx}$$

Finite element discretization Shape functions

• 1D Example with linear shape functions,

 $x = N_1(\xi) x_1 + N_2(\xi) x_2$

• For 3D case,

$$\mathbf{x} = \sum_{i=1}^{4} \mathbf{N}_{i} \left(\xi, \eta, \zeta \right) \cdot \mathbf{x}_{i}$$

• For stability and accuracy higher order shape functions necessary

10

)elft

Finite element discretization Numerical integration

• Use Gauss point(s) for numerical integration,

$$\int_{\Omega} f d\Omega \tilde{=} f\left(\xi_g, \eta_g, \zeta_g\right) \left|J\right| \int_{\Omega} d\Omega$$

Finite element discretization Stiffness matrix

• Discretized, linearized virtual work,

$$K\Delta \mathbf{u} = \mathbf{f}_{ext} - \mathbf{f}_{int}$$

Finite element discretization Stiffness matrix

- Properties of K,
 - Symmetric
 - Positive definite
 - Sparse
 - No specific pattern of non-zero matrix entries
 - Large differences in entry values due to material properties
 - Changes due to non-linear material properties

How to compute deformation? Balancing of forces algorithm

Delft

Problems with algorithm Scale

Number of elements: 1.890.057

Number of nodes: 307.735

Number of non zero elements in stiffnessmatrix: 21.296.523

Problems with algorithm Accuracy and approximation

fUDelft

Numerical methods Overview

- (Parallel) Direct solver
- Iterative solvers,
 - Preconditioning
 - CG method
 - Deflation, Domain Decomposition of Multigrid?

Parallel direct solver Definition

• Direct solver,

 $x = A^{-1}b$

- Matrix cannot be singular or ill conditioned, this leads to inaccurate solutions
- Large (3D) models yield large linear systems, serial direct solvers lack CPU power and memory

Parallel direct solver MUMPS

- Solution? Go parallel! Spread work over computing nodes. Adding more nodes implies more CPU power and memory.
- MUMPS project: public domain package and developed by CERFACS, graal.ens-lyon.fr/MUMPS/

Parallel direct solver MUMPS

Iterative methods Basics

• Solve,

$$Ax = b$$

• Use sequence of approximations of solution \boldsymbol{x} ,

$$x_0, x_1, x_2, \dots, x_k$$

where,

$$x_{k+1} = x_k + M^{-1} \left(b - A x_k \right)$$

• Choice of M defines iterative method

Iterative methods Available methods

- Splitting based methods (M = N A),
 - Jacobi
 - Gauss-Seidel
 - SSOR
- Krylov subspace methods
 - CG
 - GMRES
- Multigrid

Iterative methods Preconditioning

- Condition number, $\kappa_p(A) = ||A||_p ||A^{-1}||_p.$
- For (symmetric) SPD matrices,

$$\kappa_p(A) = \frac{|\lambda_{max}|}{|\lambda_{min}|}$$

• Improve condition of matrix,

$$M^{-1}Ax = M^{-1}b$$

Iterative methods Preconditioning

- Preconditioner is approximation of original matrix
- MatrixM can be any constant linear solver
- Many choices,
 - Incomplete LU or Cholesky decomposition,
 - Basic iterative methods (GS, Jacobi)
 - Multigrid
 - Domain decomposition
 - Deflation

Iterative methods Conjugate gradient (CG)

• Krylov subspace,

 $x_{0} + span\left\{M^{-1}r_{0}, M^{-1}A\left(M^{-1}r_{0}\right), ..., \left(M^{-1}A\right)^{i-1}\left(M^{-1}r_{0}\right)\right\}$

- Good performance for well conditioned SPD matrices
- Slow converging components corresponds to smallest eigenvalues of A
- Preconditioner necessary for ill conditioned systems

Iterative methods Multigrid

• Idea: Approximation of (smooth) error of the solution on coarser grids. Back propagate error to fine grid:

$$Ax = b \to \Delta x = x - \tilde{x}$$

$$r_h = A_h \Delta x_h \to I_h^H \to r_H = A_H \Delta x_H$$
$$\tilde{x}_h^{k+1} = \tilde{x}_h^k + I_H^h \Delta x_H$$

• Benefit: Reduction of size the system that has to be solved with direct solver.

Iterative methods Multigrid

- How to choose grid operators I_h^H, I_H^h ?
- How to choose coarse grid cells on unstructured grids?

Iterative solvers Domain decomposition

- Divide large problem into subdomains, divide work load and easy parallelizable.
- Rewrite original system,

$$\Omega_i, \forall i \in \{1, 2, ..., s\}$$
$$A\left(\begin{array}{c} \mathbf{x} \\ \mathbf{y} \end{array}\right) = \left(\begin{array}{c} \mathbf{f} \\ \mathbf{g} \end{array}\right) \text{ with } A = \left(\begin{array}{c} B & E \\ F & C \end{array}\right)$$

28

where \mathbf{y}, \mathbf{g} correspond to interface nodes

Iterative solvers Domain decomposition

• Schur complement *S*,

$$\begin{pmatrix} C - FB^{-1}E \end{pmatrix} \mathbf{y} = \mathbf{g} - FB^{-1}\mathbf{f} \\ S\mathbf{y} = \mathbf{g'}$$

- Solve \boldsymbol{y} and obtain \boldsymbol{x} from,

$$\mathbf{x} = B^{-1} \left(\mathbf{f} - E \mathbf{y} \right)$$

Iterative solvers Domain decomposition

- How to choose subdomains?
- How to solve on subdomains?

Iterative solvers Deflation

- Filter out the eigenvalues that belong to the slow converging components of for e.g. the CG method
- Deflation components,

- d, number of zero eigenvalues
- k, number of deflation vectors

∦ T∪Delft

Iterative solvers Deflation

- Preferably the deflation vectors are the eigenvectors corresponding to the smallest eigenvalues (think of condition number)
- Computation of deflation vectors is expensive, use approximations,
 - Physical : interface elements with high discontinuities
 - Analytical : use information CG, previous time steps, FE discretization etc.

Hybrid solver Combining numerical methods

33

ŤUDelft

Test case Compression

Test case Deflation + CG + preconditioning

Test case Deflation + CG + preconditioning

Future research People

- Civil Engineering (group Scarpas),
 - A. Scarpas
 - C. Kasbergen
- Applied Mathematics (group Vuik),
 - C. Vuik
 - M.B van Gijzen
 - T.B Jönsthövel

Discussion Q+A

TUDelft