Preconditioned Krylov methods for incompressible flow problems

Kees Vuik and Chunguang Li
c.vuik@math.tudelft.nl
http://ta.twi.tudelft.nl/users/vuik/
Delft University of Technology

Conference on Preconditioning methods for Optimal Control and Constrained
Optimization Problems
Nijmegen, The Netherlands, October 23-25, 2002

1. Introduction
2. SIMPLE method
3. Comparison with related method
4. Spectral analysis
5. GCR acceleration
6. Numerical experiments
7. Conclusions

Gas-fired glass melting furnace
Combustion process

The symmetry plane of the furnace Grid: $42 \times 37 \times 27$

TU Delft

Gas-fired glass melting furnace

Combustion process

The symmetry plane of the furnace Grid: $42 \times 37 \times 27$

TU Delft

3D incompressible Navier-Stokes
Turbulence $(k-\varepsilon$)
Combustion
Chemistry (one step global reaction)
Radiative heat transfer
$N O_{x}$ postprocessor

Soot formation

TUDelft

The IFRF furnace (Grid $24 \times 20 \times 16$)

method	niter	CPU time (hours)
SIMPLE	2047	4.8
SIMPLER	2415	6.9
GCR-SIMPLE	623	2.4
GCR-SIMPLER	578	2.0

combustion chamber dimensions: $34.7 \times 10.1 \times 2.3 m$

GCR-SIMPLER: 3390 iteration, CPU time ≈ 3.3 days
SIMPLER: not converged after 7.5 days
TUDelft

Incompressible Navier Stokes equation

$$
\begin{aligned}
-\nu \Delta \mathbf{u}+\mathbf{u} \cdot \operatorname{grad} \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \\
\operatorname{div} \mathbf{u} & =0
\end{aligned}
$$

Finite volumes, staggered grid

$$
\left(\begin{array}{cccc}
\mathbf{Q}_{11} & \mathbf{Q}_{12} & \mathbf{Q}_{13} & \mathbf{G}_{1} \\
\mathbf{Q}_{21} & \mathbf{Q}_{22} & \mathbf{Q}_{23} & \mathbf{G}_{2} \\
\mathbf{Q}_{31} & \mathbf{Q}_{32} & \mathbf{Q}_{33} & \mathbf{G}_{3} \\
\mathbf{G}_{1}^{T} & \mathbf{G}_{2}^{T} & \mathbf{G}_{3}^{T} & \mathbf{O}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
p
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)\binom{u}{p}=\binom{b_{1}}{b_{2}}, u \in \mathbb{R}^{n} \text { and } p \in \mathbb{R}^{m}
$$

Difficulties due to zero block

- Traditional iterative solvers fail
- SIMPLE(R) converges slowly

Patankar

- Krylov method and ILU preconditioner
- Multigrid acceleration
- Saddle point preconditioner

Gjesdal, Wesseling, Wittum
Elman, Silvester, Wathen

TU Delft
$\mathbf{D}=\operatorname{diag}(\mathbf{Q})$ and $\mathbf{R}=-\mathbf{G}^{T} \mathbf{D}^{-1} \mathbf{G}$

SIMPLE algorithm

1. Choose an initial estimate p^{*}.
2. Solve $\mathbf{Q} u^{*}=b_{1}-\mathbf{G} p^{*}$.
3. Solve $\mathbf{R} \delta p=b_{2}-\mathbf{G}^{T} u^{*}$.
4. Compute $u=u^{*}-\mathbf{D}^{-1} \mathbf{G} \delta p$ and $p:=p^{*}+\delta p$.
5. If not converged take $p^{*}=p$ and go to 2 .

Systems are solved by a TDMA solver, use of relaxation parameters
Patankar, Spalding, Wittum, Van Doormaal, Raithby, Ferziger, Peric
TU Delft

Definitions

$$
\mathbf{A}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}
\mathbf{I} & -\mathbf{D}^{-1} \mathbf{G} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

Problem

$$
\mathbf{A} x=b
$$

Right-preconditioned system

$$
\mathbf{A B} y=b, x=\mathbf{B} y
$$

TU Delft

$$
\mathbf{A B}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G}-\mathbf{Q D}^{-1} \mathbf{G} \\
\mathbf{G}^{T} & R
\end{array}\right)
$$

Splitting method (Gauss-Seidel)

$$
\mathbf{A B}=\mathbf{M}-\mathbf{N}, \quad \mathbf{M}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{0} \\
\mathbf{G}^{T} & R
\end{array}\right)
$$

SIMPLE method

$$
x^{k+1}=x^{k}+\mathbf{B M}^{-1}\left(b-\mathbf{A} x^{k}\right)
$$

distributive iterative method
Hackbusch, Wittum, Wesseling
TUDelft

A saddle point preconditioner proposed by Elman, Silvester, Wathen:

$$
\mathbf{P}_{\mathbf{E}}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{0} & -\mathbf{X}
\end{array}\right)^{-1}
$$

A saddle point preconditioner proposed by Elman, Silvester, Wathen:

$$
\mathbf{P}_{\mathbf{E}}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{0} & -\mathbf{X}
\end{array}\right)^{-1}
$$

It is easy to show that

$$
\mathbf{A} \mathbf{P}_{\mathbf{E}}=\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{G}^{T} \mathbf{Q}^{-1} \mathbf{G X}^{-1}
\end{array}\right)
$$

A saddle point preconditioner proposed by Elman, Silvester, Wathen:

$$
\mathbf{P}_{\mathbf{E}}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{0} & -\mathbf{X}
\end{array}\right)^{-1}
$$

It is easy to show that

$$
\mathbf{A} \mathbf{P}_{\mathbf{E}}=\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{G}^{T} \mathbf{Q}^{-1} \mathbf{G X}^{-1}
\end{array}\right)
$$

so that the eigenvalues are: $\{1\} \cup \sigma\left(\mathbf{G}^{T} \mathbf{Q}^{-1} \mathbf{G} \mathbf{X}^{-1}\right)$, where the algebraic multiplicity of eigenvalue 1 is equal to n.

For the SIMPLE preconditioner we have:

$$
\mathbf{M}^{-1}=\left(\begin{array}{cc}
\mathbf{Q}^{-1} & \mathbf{0} \\
-\mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{R}^{-1}
\end{array}\right)
$$

TU Delft

For the SIMPLE preconditioner we have:

$$
\mathbf{M}^{-1}=\left(\begin{array}{cc}
\mathbf{Q}^{-1} & \mathbf{0} \\
-\mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{R}^{-1}
\end{array}\right) .
$$

So the iteration matrix $\mathbf{A B M}^{-1}$ can be written as:

$$
\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \left(\mathbf{I}-\mathbf{Q} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

For the SIMPLE preconditioner we have:

$$
\mathbf{M}^{-1}=\left(\begin{array}{cc}
\mathbf{Q}^{-1} & \mathbf{0} \\
-\mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{R}^{-1}
\end{array}\right) .
$$

So the iteration matrix $\mathbf{A B M}^{-1}$ can be written as:

$$
\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \left(\mathbf{I}-\mathbf{Q} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

The eigenvalues of $\mathbf{A B M}{ }^{-1}$ are: $\{1\} \cup \sigma\left(\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1}\right)$, where the multiplicity of eigenvalue 1 is at least m.

$$
\operatorname{SIMPLE}\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \left(\mathbf{I}-\mathbf{Q D} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

If $\mathbf{D} \rightarrow \mathbf{Q}$, the SIMPLE iteration matrix goes to \mathbf{I}.

$$
\operatorname{SIMPLE}\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
$$

If $\mathbf{D} \rightarrow \mathbf{Q}$, the SIMPLE iteration matrix goes to \mathbf{I}.

$$
\text { Saddle point }\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{G}^{T} \mathbf{Q}^{-1} \mathbf{G X}^{-1}
\end{array}\right)
$$

For $\mathbf{X} \rightarrow \mathbf{G}^{T} \mathbf{Q}^{-1} \mathbf{G}$, the Saddle point iteration matrix goes to

$$
\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \\
\mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{I}
\end{array}\right)
$$

TU Delft

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), x=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), b=e_{4}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), x=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), \quad b=e_{4}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Krylov space
$K_{1}\{A ; b\}=\operatorname{span}\left\{e_{4}\right\}$

TUDelft

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), x=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), \quad b=e_{4}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Krylov space

$$
\begin{aligned}
& K_{1}\{A ; b\}=\operatorname{span}\left\{e_{4}\right\} \\
& K_{2}\{A ; b\}=\operatorname{span}\left\{e_{3}, e_{4}\right\}
\end{aligned}
$$

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), x=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), b=e_{4}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Krylov space

$$
\begin{aligned}
& K_{1}\{A ; b\}=\operatorname{span}\left\{e_{4}\right\} \\
& K_{2}\{A ; b\}=\operatorname{span}\left\{e_{3}, e_{4}\right\} \\
& K_{3}\{A ; b\}=\operatorname{span}\left\{e_{2}, e_{3}, e_{4}\right\}
\end{aligned}
$$

Example

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right), x=\left(\begin{array}{r}
-1 \\
1 \\
-1 \\
1
\end{array}\right), \quad b=e_{4}:=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

Krylov space
$K_{1}\{A ; b\}=\operatorname{span}\left\{e_{4}\right\}$
$K_{2}\{A ; b\}=\operatorname{span}\left\{e_{3}, e_{4}\right\}$
$K_{3}\{A ; b\}=\operatorname{span}\left\{e_{2}, e_{3}, e_{4}\right\}$
Full GMRES requires n iterations, before convergence sets in.

TUDelft
$J:=D^{-1}(D-Q)$ is the Jacobi iteration matrix for Q.

Proposition

1. 1 is an eigenvalue with algebraic multiplicity at least of m, and
2. the remaining eigenvalues are $1-\mu_{i}, i=1,2, \cdots, n$, where μ_{i} is the i the eigenvalue of the generalized eigenvalue problem

$$
B x=\mu Z x,
$$

where,

$$
B=G R^{-1} G^{T} \in \mathbb{R}^{n \times n}, \quad Z=Q J^{-1} \in \mathbb{R}^{n \times n} .
$$

TU Delft

The eigenvalue problem $A P^{-1} x=\lambda x$ has the same spectrum as the generalized eigenvalue problem $A x=\lambda P x$.

For SIMPLE

$$
P=M B^{-1}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{0} \\
\mathbf{G}^{T} & \mathbf{R}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I} & \mathbf{D}^{-1} \mathbf{G} \\
\mathbf{0} & \mathbf{R}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{Q D}^{-1} \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)
$$

TUDelft

The eigenvalue problem $A P^{-1} x=\lambda x$ has the same spectrum as the generalized eigenvalue problem $A x=\lambda P x$.

For SIMPLE

$$
P=M B^{-1}=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{0} \\
\mathbf{G}^{T} & \mathbf{R}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{I} & \mathbf{D}^{-1} \mathbf{G} \\
\mathbf{0} & \mathbf{R}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{Q D}^{-1} \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)
$$

So the generalized eigenvalue problem can be written as

$$
\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)\binom{u}{p}=\lambda\left(\begin{array}{cc}
\mathbf{Q} & \mathbf{Q D}^{-1} \mathbf{G} \\
\mathbf{G}^{T} & \mathbf{0}
\end{array}\right)\binom{u}{p}
$$

TUDelft

Writing out and rearrangement yields:

$$
\left\{\begin{aligned}
(1-\lambda) u & =-Q^{-1} G p+\lambda D^{-1} G p \\
G^{T}(1-\lambda) u & =0
\end{aligned}\right.
$$

Writing out and rearrangement yields:

$$
\left\{\begin{aligned}
(1-\lambda) u & =-Q^{-1} G p+\lambda D^{-1} G p \\
G^{T}(1-\lambda) u & =0 .
\end{aligned}\right.
$$

So 1 is an eigenvalue and the corresponding eigenvectors are

$$
v_{i}=\binom{u_{i}}{0} \in \mathbb{R}^{(n+m)}, u_{i} \in \mathbb{R}^{n}, i=1,2, \cdots, n,
$$

where, $\left\{u_{i}\right\}_{i=1}^{n}$ is an arbitrary linearly independent base of \mathbb{R}^{n}.

For $\lambda \neq 1$, combining the two equations leads to

$$
-G^{T} Q^{-1} G p=-\lambda G^{T} D^{-1} G p
$$

Note that $S=-G^{T} Q^{-1} G$ is the Schur complement of the matrix A.

For $\lambda \neq 1$, combining the two equations leads to

$$
-G^{T} Q^{-1} G p=-\lambda G^{T} D^{-1} G p
$$

Note that $S=-G^{T} Q^{-1} G$ is the Schur complement of the matrix A.
Proposition
For the SIMPLE preconditioned matrix

1. 1 is an eigenvalue with multiplicity of n, and
2. the remaining eigenvalues are defined by the generalized eigenvalue problem

$$
S p=\lambda R p .
$$

The extreme eigenvalues of the generalized eigenvalue problem $S p=\lambda R p$ are the extreme values of:

$$
\frac{p^{T} S p}{p^{T} R p}=\frac{p^{T} G^{T} Q^{-1} G p}{p^{T} G^{T} D^{-1} G p}, \quad p \neq 0, p \in \mathbb{R}^{m}
$$

The extreme eigenvalues of the generalized eigenvalue problem $S p=\lambda R p$ are the extreme values of:

$$
\frac{p^{T} S p}{p^{T} R p}=\frac{p^{T} G^{T} Q^{-1} G p}{p^{T} G^{T} D^{-1} G p}, \quad p \neq 0, p \in \mathbb{R}^{m}
$$

Since G has full column rank

$$
\lambda_{\max }=\max _{y \neq 0} \frac{y^{T} Q^{-1} y}{y^{T} D^{-1} y}
$$

The extreme eigenvalues of the generalized eigenvalue problem $S p=\lambda R p$ are the extreme values of:

$$
\frac{p^{T} S p}{p^{T} R p}=\frac{p^{T} G^{T} Q^{-1} G p}{p^{T} G^{T} D^{-1} G p}, \quad p \neq 0, p \in \mathbb{R}^{m}
$$

Since G has full column rank

$$
\lambda_{\max }=\max _{y \neq 0} \frac{y^{T} Q^{-1} y}{y^{T} D^{-1} y}
$$

This implies

$$
\min \left\{1, \frac{d_{n}}{\mu_{1}}\right\} \leqslant \lambda \leqslant \max \left\{1, \frac{d_{1}}{\mu_{n}}\right\}
$$

where $d_{n} \leq \sigma(D) \leq d_{1}$ and $\mu_{n} \leq \sigma(Q) \leq \mu_{1}$.
TUDelft

LSQR
 GMRES
 CGS
 Bi-CGSTAB

Paige and Saunders
Saad and Schultz
Sonneveld
Van der Vorst and Sonneveld

LSQR
GMRES
CGS
Bi-CGSTAB

GCR
GMRESR

Paige and Saunders
Saad and Schultz
Sonneveld
Van der Vorst and Sonneveld

Eisenstat, Elman and Schultz
Van der Vorst and Vuik

$$
r^{0}=b-\mathbf{A} x^{0}
$$

$$
\text { for } k=0,1, \ldots, n g c r
$$

$$
\begin{aligned}
s^{k+1} & =\mathbf{B M}_{k}^{-1} r^{k} \\
v^{k+1} & =\mathbf{A} s^{k+1}
\end{aligned}
$$

$$
\text { for } i=1,2, \ldots, k
$$

$$
v^{k+1}=v^{k+1}-\left(v^{k+1}, v^{i}\right) v^{i}
$$

$$
s^{k+1}=s^{k+1}-\left(v^{k+1}, v^{i}\right) s^{i}
$$

end for

$$
\begin{aligned}
v^{k+1} & =v^{k+1} /\left\|v^{k+1}\right\|_{2}, \quad s^{k+1}=s^{k+1} /\left\|v^{k+1}\right\|_{2} \\
x^{k+1} & =x^{k}+\left(r^{k}, v^{k+1}\right) s^{k+1} \\
r^{k+1} & =r^{k}-\left(r^{k}, v^{k+1}\right) v^{k+1}
\end{aligned}
$$

end for
TU Delft

Dirichlet boundary conditions (velocity)

$$
u_{P}=g_{P}
$$

Add $c_{\text {max }}$ to the main diagonal, add $c_{\max } g_{P}$ to the right-hand side

GCR-SIMPLE: bad results

Diagonal scaling \Rightarrow GCR-SIMPLE: good results

TUDelft

Scale the matrix A by left multiplying with the diagonal matrix

$$
\widehat{D}:=\left(\begin{array}{cc}
\mathbf{D}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}_{R}^{-1}
\end{array}\right)
$$

TUDelft

Scale the matrix A by left multiplying with the diagonal matrix

$$
\begin{gathered}
\widehat{D}:=\left(\begin{array}{cc}
\mathbf{D}^{-1} & \mathbf{0} \\
0 & \mathbf{D}_{R}^{-1}
\end{array}\right) \\
\widehat{A}=\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{D}^{-1}\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{D}_{R} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
\end{gathered}
$$

TUDelft

Scale the matrix A by left multiplying with the diagonal matrix

$$
\begin{gathered}
\widehat{D}:=\left(\begin{array}{cc}
\mathbf{D}^{-1} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}_{R}^{-1}
\end{array}\right) \\
\widehat{A}=\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \mathbf{D}^{-1}\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G R}^{-1} \mathbf{D}_{R} \\
\mathbf{0} & \mathbf{I}
\end{array}\right) \\
A=\left(\begin{array}{cc}
\mathbf{I}-\left(\mathbf{I}-\mathbf{Q D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{Q}^{-1} & \left(\mathbf{I}-\mathbf{Q} \mathbf{D}^{-1}\right) \mathbf{G} \mathbf{R}^{-1} \\
\mathbf{0} & \mathbf{I}
\end{array}\right)
\end{gathered}
$$

TUDelft

$$
\begin{aligned}
& \text { Incompressible Oseen equation } \\
& \begin{aligned}
-\nu \Delta \mathbf{u}+\mathbf{w} \cdot \operatorname{grad} \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \\
\operatorname{divu} & =0
\end{aligned}
\end{aligned}
$$

TUDelft

$$
\begin{aligned}
& \text { Incompressible Oseen equation } \\
& \begin{aligned}
-\nu \Delta \mathbf{u}+\mathbf{w} \cdot \operatorname{grad} \mathbf{u}+\operatorname{grad} p & =\mathbf{f} \\
\operatorname{divu} & =0
\end{aligned}
\end{aligned}
$$

Consider a channel flow for a channel with width 2 and varying length.
The Dirichlet b. c. are included as extra equations in the linear system.

We start GCR with $x_{0}=0$ and stop if $\frac{\left\|r_{k}\right\|}{\|b\|} \leq \epsilon$.

Staggered grid, 16×16, exact inverses are used
Stokes flow

Length	2	20	200
no scaling	26	35	17
scaling	18	22	9

TUDelft

Staggered grid, 16×16, exact inverses are used
Stokes flow

Length	2	20	200
no scaling	26	35	17
scaling	18	22	9

Oseen, $\nu=0.01,0.1 * w$

Length	2	20	200
no scaling	21	29	15
scaling	20	30	17

TU Delft

Staggered grid, 16×16, exact inverses are used
Stokes flow

Length	2	20	200
no scaling	26	35	17
scaling	18	22	9

Oseen, $\nu=0.01,0.1 * w$

Length	2	20	200
no scaling	21	29	15
scaling	20	30	17

Oseen, $\nu=1,10 * w$

Length	2	20	200
no scaling	29	45	30
scaling	20	30	17

Number of iterations of the preconditioned GCR method As Saddle Point preconditioner we take $\mathbf{X}=\gamma \mathbf{I}$ (Elman 1999).

Length	2	20	200
ILU	57	62	91
SIMPLE	18	22	9
SIMPLER	9	11	6
Elman	12	22	31

Oseen, $\nu=0.01,0.01 * w$

Length	2	20	200
ILU	57	63	94
SIMPLE	19	24	11
SIMPLER	9	13	7
Elman	12	25	39

TU Delft

Oseen, $\nu=0.01,0.01 * w$

Length	2	20	200
ILU	57	63	94
SIMPLE	19	24	11
SIMPLER	9	13	7
Elman	12	25	39

Oseen, $\nu=0.01,0.1 * w$

Length	2	20	200
ILU	53	91	101
SIMPLE	20	30	17
SIMPLER	8	16	12
EIman	26	49	53

TUDelft

Incompressible Oseen equation: $\nu=0.01,0.1 * w$ and Length $=200$

Incompressible Oseen equation: $\nu=0.01,0.1 * w$ and Length $=200$

TU Delft

Incompressible Oseen equation: $\nu=0.01,0.1 * w$ and Length $=200$

TU Delft

Incompressible Oseen equation: $\nu=0.01,0.1 * w$ and Length $=200$

TU Delft

The length is 25 and the width is 2.
We have a parabolic profile at the upper half part of the inflow boundary.

Oseen: w is equal to zero in the lower part of the channel and equal to the Poiseuille flow velocities in the upper part of the channel.

The length is 25 and the width is 2.
We have a parabolic profile at the upper half part of the inflow boundary.

Oseen: w is equal to zero in the lower part of the channel and equal to the Poiseuille flow velocities in the upper part of the channel.

Preconditioner	Stokes	Oseen	
		$\nu=0.25$	$\nu=0.025$
	77	77	136
SIMPLE	47	52	66
SIMPLER	16	17	18
Elman	34	41	105

TU Delft

- GCR-SIMPLE(R) is an efficient and robust method to simulate incompressible flows (glass-melting furnaces)
- GCR-SIMPLE(R) allows large relaxation factors
- The GCR acceleration can easily be added in an existing CFD code
- GCR-SIMPLE(R) is robust with respect to variations in the Reynolds number and stretching of the grid cells.
C. Vuik, A. Saghir and G.P. Boerstoel

The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
International J. for Numer. Methods in Fluids, 33, pp. 1027-1040, 2000.
C. Vuik and A. Saghir

The Krylov accelerated SIMPLE(R) method for incompressible flow Delft University of Technology, Department of Applied Mathematical Analysis, Report 02-01, 2002

http://ta.twi.tudelft.nl/nw/users/vuik/pub.html

