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1. Introduction

Streamlines around the stern and the axial velocity field in

the wake.
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2. Problem

−ν∇2
u+ u.∇u+∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity vector

p is the pressure field

ν > 0 is the kinematic viscosity coefficient ( 1/Re).

Ω ⊂ R
2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .
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Linear system

Matrix form after linearization and discretization:





F BT

B 0









u

p



 =





f

g





where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = νA in Stokes problem, A is vector Laplacian matrix

• F = νA+N in Picard linearization, N is vector-convection matrix

• F = νA+N +W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

• Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric

otherwise.

• Saddle point problem having large number of zeros on the main diagonal
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3. Krylov Solvers and preconditioners

• Direct method:

To solve Ax = b,

factorize A into upper U and lower L triangular matrices (LUx = b)

First solve Ly = b, then Ux = y

• Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations

xk+1 = M−1(Nxk + b) = Qxk + s, where A = M −N

Jacobi, Gauss Seidel, SOR, SSOR

• Krylov Subspace Methods:

xk+1 = xk + αkpk
Some well known methods are

CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],

GMRESR[1994], GCR[1986], IDR(s)[2007]



October 6, 2014 7

Numerical Analysis Group, DIAM

IDR and IDR(s) (Induced Dimension Reduction)

• Sonneveld developed IDR in the 1970’s. IDR is a finite

termination (Krylov) method for solving nonsymmetric linear

systems.

• Analysis showed that IDR can be viewed as Bi-CG

combined with linear minimal residual steps.

• This discovery led to the development of first CGS, and later

of Bi-CGSTAB (by van der Vorst).
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IDR and IDR(s) (continued)

• As a result of these developments the basic IDR-idea was

abandoned for the Bi-CG-approach.

• Recently, Sonneveld and van Gijzen discovered that the

IDR-approach was abandoned too soon and proposed a

generalization of IDR: IDR(s).

• P. SONNEVELD AND M.B. VAN GIJZEN IDR(s): a family of simple

and fast algorithms for solving large nonsymmetric systems

of linear equations

SIAM J. Sci. Comput., 31, pp. 1035-1062, 2008

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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4. ILU-type Preconditioners

A linear system Ax = b is transformed into P−1Ax = P−1b such that

• P ≈ A

• Eigenvalues of P−1A are more clustered than A

• Pz = r cheap to compute

Several approaches, we will discuss here

• ILU preconditioner

• Preconditioned IDR(s) and Bi-CGSTAB comparison

• Block preconditioners
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SILU preconditioners

New renumbering Scheme

• Renumbering of grid points:

• Sloan algorithm [Sloan - 1986]

• Cuthill McKee algorithms [Cuthill McKee - 1969]

• The unknowns are reordered by p-last or p-last per level methods

• In p-last reordering, first all the velocity unknowns are ordered followed by

pressure unknowns. Usually it produces a large profile but avoids breakdown

of LU decomposition.

• In p-last per level reordering, unknowns are reordered per level such that at

each level, the velocity unknowns are followed by the pressure unknowns.

what are the levels ?
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SILU preconditioner

4× 4 Q2-Q1 grid
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Numerical experiments (SILU preconditioner)

Driven cavity flow problem Backward facing step problem
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The iteration is stopped if the linear systems satisfy
‖rk‖2

‖b‖2

≤ tol.
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Numerical experiments (SILU preconditioners)

Stokes Problem in a square domain with Bi-CGSTAB,

accuracy = 10−6, Sloan renumbering

Q2−Q1 Q2− P1

Grid size p-last p-last per level p-last p-last per level

16× 16 36(0.11) 25(0.09) 44(0.14) 34(0.13)

32× 32 90(0.92) 59(0.66) 117(1.08) 75(0.80)

64× 64 255(11.9) 135(6.7) 265(14) 165(9.0)

128× 128 472(96) 249(52) 597(127) 407(86)
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Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for increasing stretch factor for

the driven cavity Stokes problem.
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Numerical Experiments (IDR(s) vs Bi-CGSTAB(l))

SILU preconditioned: Comparison of iterative methods

Driven Cavity Stokes problem, stretch factor 10

Grid Bi-CGSTAB(l) IDR(s)

Mat.-Vec.(ts) l Mat.-Vec.(ts) s

128× 128 1104(36.5) 4 638(24.7) 6

256× 256 5904(810) 6 1749(307) 8

Channel flow Stokes problem, length 100

Grid Bi-CGSTAB(l) IDR(s)

Mat.-Vec.(ts) l Mat.-Vec.(ts) s

64× 64 1520(12) 4 938(8.7) 8

128× 128 NC 6 8224(335) 8
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5. Block preconditioners

A = LbDbUb =


 F BT

B 0


 =


 I 0

BM−1

l
I




 F 0

0 S




 I M−1

u BT

0 I




Ml = Mu = F and S = −BF−1BT is the Schur-complement matrix.

Ubt = DbUb =


 F BT

0 Ŝ


 , Lbt = LbDb =


 F 0

B Ŝ


 .

Preconditioners are based on combination of these blocks involve:

Fz1 = r1 The velocity subsystem

S −→ Ŝ

Ŝz2 = r2 The pressure subsystem
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Block preconditioners

Block triangular preconditioners

Pt = Ubt =


 F BT

0 Ŝ




• Pressure convection diffusion (PCD) [Kay et al, 2002]

Ŝ = −ApF
−1
p Qp, Qp is the pressure mass matrix

• Least squares commutator (LSC) [Elman et al, 2002]

Ŝ = −(BQ−1
u BT )(BQ−1

u FQ−1
u BT )−1(BQ−1

u BT ), Qu is the velocity mass

matrix

• Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006]

F is replaced by Fγ = F + γBW−1BT

Ŝ−1 = −(νQ̂−1
p + γW−1), W = Q̂p
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Block preconditioners (SIMPLE)

SIMPLE-type preconditioners[Vuik et al-2000]

SIMPLE SIMPLER

z = U
−1

b
L
−1

bt
r z = U

−1

bt
L
−1

b
r

z = z + U−1

b
L−1

bt
(r −Az)

Mu = D Ml = Mu = D, D = diag(F )

Ŝ = BD−1BT Ŝ = BD−1BT

One Poisson solve Two Poisson solves

One velocity solve Two velocity solves

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one

or two velocity solves) are identical .
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Improvements in SIMPLE-type preconditioners

We use approximate solvers for subsystems, so flexible

Krylov solvers are required (GCR, FGMRES, GMRESR)

• hSIMPLER

• MSIMPLER
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Improvements in SIMPLE(R) preconditioners

hSIMPLER preconditioner:

In hSIMPLER (hybrid SIMPLER), first iteration of Krylov method preconditioned with

SIMPLER is done with SIMPLE and SIMPLER is employed afterwards.
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- Faster convergence than SIMPLER

- Effective in the Stokes problem
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Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:
Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.

LSC: Ŝ ≈ −(BQ̂u
−1BT )(BQ̂u

−1 FQ̂u
−1

︸ ︷︷ ︸B
T )−1(BQ̂u

−1BT )

assuming FQ̂u
−1 ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂u
−1BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with

Q̂u
−1.

-Convergence better than other variants of SIMPLE

-Cheaper than SIMPLER (in construction) and LSC (per iteration)
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Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with

preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1 hexahedrons

Grid SIMPLE LSC MSIMPLER

iter. (ts) in-it-u
in-it-p

8× 8× 16 44(4) 97

342
16(1.9) 41

216
14(1.4) 28

168

16× 16× 32 84(107) 315

1982
29(51) 161

1263
17(21) 52

766

24× 24× 48 99(447) 339

3392
26(233) 193

2297
17(77) 46

1116

32× 32× 40 132(972) 574

5559
37(379) 233

2887
20(143) 66

1604
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Numerical Experiments (comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-Stokes problem is solved with

accuracy 10−4, a linear system at each Picard step is solved with accuracy 10−2 using

preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner solver in block

preconditioners(SEPRAN)

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16× 16× 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32× 32× 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)
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Numerical Experiments (comparison)

2D Lid driven cavity problem on 64× 64 stretched grid: The Stokes problem is solved

with accuracy 10−6. PCG is used as inner solver in block preconditioners (SEPRAN) .

Stretch factor LSC MSIMPLER SILU

GCR iter. GCR iter. Bi-CGSTAB iter.

1 20 17 96

8 49 28 189

16 71 34 317

32 97 45 414

64 145 56 NC

128 NC 81 NC
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The Augmented Lagrangian method


F BT

B O




u
p


 =


f
g


 is transformed into


F + γBTW−1B BT

B 0




u
p


 =


 f̂

g


 or AALx = b̂,

with f̂ = f + γBTW−1B g, where W is a non-singular matrix.

The Ideal AL preconditioner proposed for AAL is

PIAL =


F + γBTW−1B 0

B − 1

γ
W


 .
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The Augmented Lagrangian method

AAL =


F + γBTW−1B BT

B 0


 (SAL = −B(F + γBTW−1B)−1BT )

PIAL =


F + γBTW−1B 0

B − 1

γ
W


 (Fγ = F + γBTW−1B)

• The Schur complement SAL of AAL is approximated by − 1

γ
W .

• The block Fγ becomes increasingly ill-conditioned with γ → ∞.

• In practice it is often chosen as γ = 1, or γ = O(1), and W = Q̂P .

• Open question: fast solution methods for systems with Fγ , which is denser than F

and consists of mixed derivatives.

[1] M. Benzi and M.A. Olshanskii. An augmented Lagrangian-based approach to the

Oseen problem. SIAM J. Sci. Comput., 28:2095-2113, 2006.
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The Augmented Lagrangian method

The transformed coefficient matrix AAL = [ F+γBTW−1B BT

B 0
] and the ideal AL

precondition PIAL = [
F+γBTW−1B 0

B −
1

γ
W

] includes (in 2D)

• the convection-diffusion block: F = [ F11 O
O F11

],

• the (negative) divergence matrix: B = [B1 B2 ],

• the modified pivot block Fγ =

[
F11+γBT

1
W−1B1 γBT

1
W−1B2

γBT
2
W−1B1 F11+γBT

2
W−1B2

]
.

One approximation of Fγ is F̃γ = [
F11+γBT

1
W−1B1 O

γBT
2
W−1B1 F11+γBT

2
W−1B2

], which leads to

the modified AL preconditioner PMAL for AAL.
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The Augmented Lagrangian method

PIAL = [
Fγ 0

B −
1

γ
W ] (Fγ = [

F11+γBT
1
W−1B1 γBT

1
W−1B2

γBT
2
W−1B1 F11+γBT

2
W−1B2

])

PMAL = [
F̃γ 0

B −
1

γ
W

] (F̃γ = [
F11+γBT

1
W−1B1 0

γBT
2
W−1B1 F11+γBT

2
W−1B2

])

• systems with F̃γ are easier to be solved, compared to Fγ .

• the number of iterations by using the ideal and modified AL preconditioners are

both independent of the mesh refinement, and nearly independent of the Reynolds

(viscosity) number.

• by using the modified AL preconditioner, there exists an optimal value of γ, which

minimises the number of Krylov subspace iterations. The optimal γ is problem

dependent, but mesh size independent.
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Numerical experiments (Lid driven cavity)

2D lid driven cavity problem. the domain is [0, 1]× [0, 1]. The Reynolds number is

Re = UL/ν, and here U = 1 and L = 1. The stretched grids are generated based on

the uniform Cartesian grids with n× n cells. The stretching function is applied in both

directions with parameters a = 1/2 and b = 1.1

x =
(b+ 2a)c− b+ 2a

(2a+ 1)(1 + c)
, c = (

b+ 1

b− 1
)
x̄−a
1−a , x̄ = 0, 1/n, 2/n, ..., 1.
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Numerical experiments (Lid driven cavity)

Re 100 400 1000 2500⋆ 5000⋆

modified AL preconditioner

Picard iterations: 14 27 33 66 286

GCR iterations: 5 9 11 17 19

total time: 22.7 65.1 119.6 457.7 2636.3

modified ’grad-div’ preconditioner

Picard iterations: 13 27 31 51 308

GCR iterations: 7 11 16 28 24

total time: 10.8 35.8 64.4 159.5 812.5

ideal SIMPLER preconditioner

Picard iterations: 14 27 31 51 325

GCR iterations: 40 53 63 92 107

total time: 81.5 235.2 508.4 929.7 9548.7
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Numerical experiments (Lid driven cavity)

Re 100 400 1000 2500⋆ 5000⋆

modified AL preconditioner

Newton iterations: 6 7 7 8 9

GCR iterations: 8 14 21 33 50

total time: 14.8 26.2 74.6 194.2 277.1

modified ’grad-div’ preconditioner

Newton iterations: 6 7 8 9 9

GCR iterations: 10 17 28 53 77

total time: 8.5 15.7 32.7 119.1 167.9

modified SIMPLER preconditioner

Newton iterations: 10 8⋆ 8⋆ 11 15

GCR iterations: 43 82 84 80 90

total time: 68.3 102.9 232.8 203.2 561.6
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6. Maritime Applications

Container vessel (unstructured grid)

RaNS equations

k-ω turbulence model

y+ ≈ 1

Model-scale:

Re = 1.3 · 107

13.3m cells

max aspect ratio 1 : 1600
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Tanker (block-structured grid)

Model-scale:

Re = 4.6 · 106

2.0m cells

max aspect ratio 1 : 7000

Full-scale:

Re = 2.0 · 109

2.7m cells

max aspect ratio 1 : 930 000
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Discretization

Co-located, cell-centered finite volume discretization of the steady Navier-Stokes

equations with Picard linearization leads to linear system:




Q1 0 0 G1

0 Q2 0 G2

0 0 Q3 G3

D1 D2 D3 C







u1

u2

u3

p




=




f1

f2

f3

g




for brevity:


Q G

D C




f
g




with Q1 = Q2 = Q3.

⇒ Solve system with FGMRES and SIMPLE-type preconditioner

Turbulence equations (k-ω model) remain segregated
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SIMPLE-method

Given uk and pk:

1. solve Qu∗ = f −Gpk

2. solve (C −DQ−1G)p′ = g −Du∗ − Cpk

3. compute u′ = −Q−1Gp′

4. update uk+1 = u∗ + u′ and pk+1 = pk + p′

with the SIMPLE approximation Q−1 ≈ diag(Q)−1.

⇒ “Matrix-free”: only assembly and storage of Q and (C −DQ−1G). For D, G and C

the action suffices.
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SIMPLER: additional pressure prediction

Given uk and pk, start with a pressure prediction:

1. solve (C −D diag(Q)−1G)p∗ = g −Duk −D diag(Q)−1(f −Quk)

2. continue with SIMPLE using p∗ instead of pk
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Some practical constraints

Compact stencils are preferred on unstructured grids:

• neighbors of cell readily available; neighbors of neighbors not

Also preferred because of MPI parallel computation:

• domain decomposition, communication

Compact stencil?

✓ Matrix Q1(= Q2 = Q3), thanks to defect correction

✗ Stabilization matrix C

⇒ modify SIMPLE(R) such that C is not required on the l.h.s.
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Treatment of stabilization matrix

• In SIMPLE, neglect C in l.h.s. of pressure correction equation

(C −Ddiag(Q)−1G)p′ = g −Du∗ − Cpk

⇓

−Ddiag(Q)−1Gp′ = g −Du∗ − Cpk

• In SIMPLER, do not involve the mass equation when deriving the pressure

prediction p∗

(C −D diag(Q)−1G)p∗ = g −Duk −D diag(Q)−1(f −Quk)

⇓

−D diag(Q)−1Gp∗ = −D diag(Q)−1(f −Quk)
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Container vessel

Tables show number of non-linear iterations and wall clock time needed to converge to

machine precision, starting from uniform flow.

Model-scale Re = 1.3 · 107, max cell aspect ratio 1 : 1600

grid CPU cores SIMPLE KRYLOV-SIMPLER

# its Wall clock # its Wall clock

13.3m 128 3187 5h 26mn 427 3h 27mn
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Tanker

Model-scale Re = 4.6 · 106, max cell aspect ratio 1 : 7000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

0.25m 8 1379 25mn 316 29mn

0.5m 16 1690 37mn 271 25mn

1m 32 2442 57mn 303 35mn

2m 64 3534 1h 29mn 519 51mn

Full-scale Re = 2.0 · 109, max cell aspect ratio 1 : 930 000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

2.7m 64 29 578 16h 37mn 1330 3h 05mn
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7. Conclusions

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when

the problem is solved with high accuracy.

• MSIMPLER shows better performance than LSC. Both have similar convergence

characteristics.

• For academic problems, Modified Augmented Lagrangian (MAL) and grad-div are

nearly independent of the grid size and Reynolds number

• MAL/grad-div are faster than (M)SIMPLER

• Future research: MAL/grad-div for industrial (Maritime) applications
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