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2. Problem

−ν∇2
u + u.∇u + ∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity vector
p is the pressure field
ν > 0 is the kinematic viscosity coefficient ( 1/Re).
Ω ⊂ R

2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .
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Finite element discretization

Discrete weak formulation:

Xh ⊂ (H1

0
(Ω))d, Mh ⊂ L2(Ω)

Find uh ∈ Xh and ph ∈ Mh

ν

Z

Ω
∇uh : ∇vhdΩ +

Z

Ω
(uh.∇uh).vhdΩ −

Z

Ω
ph(∇.vh)dΩ =

Z

Ω
f .vhdΩ, ∀vh ∈ Xh,

Z

Ω
qh(∇.uh)dΩ = 0 ∀qh ∈ Mh.

Matrix notation:

Au + N(u) + BT p = f

Bu = 0.
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Finite element discretization

For a unique solution, finite elements must satisfy the LBB condition

inf
q∈Mh

sup
v∈Xh

(∇.vh, qh)

‖vh‖Xh
‖qh‖Mh

≥ γ ≥ 0.

• Taylor-Hood elements [Taylor and Hood, 1973]: Bi-quadratic
velocity and bi-linear pressure (Q2-Q1).

• Crouzeix Raviart elements [Crouzeix and Raviart, 1973]:
Bi-quadratic velocity, discontinuous linear pressure (Q2-P1).
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Finite element discretization

Non-zero pattern of the Stokes matrix with two families of elements
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Linear system

Matrix form after linearization:




F BT

B 0









u

p



 =





f

g





where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = νA in Stokes problem, A is vector Laplacian matrix

• F = νA + N in Picard linearization, N is vector-convection matrix

• F = νA + N + W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

• Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric
otherwise.

• Saddle point problem having large number of zeros on the main diagonal
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3. Krylov Solvers and preconditioners

• Direct method:

To solve Ax = b,
factorize A into upper U and lower L triangular matrices (LUx = b)
First solve Ly = b, then Ux = y

• Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations
xk+1 = M−1(Nxk + b) = Qxk + s, where A = M − N

Jacobi, Gauss Seidel, SOR, SSOR

• Krylov Subspace Methods:

xk+1 = xk + αkpk

Some well known methods are
CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],
GMRESR[1994], GCR[1986], IDR(s)[2007]
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IDR and IDR(s) (Induced Dimension Reduction)

• Sonneveld developed IDR in the 1970’s. IDR is a finite

termination (Krylov) method for solving nonsymmetric linear

systems.

• Analysis showed that IDR can be viewed as Bi-CG

combined with linear minimal residual steps.

• This discovery led to the development of first CGS, and later

of Bi-CGSTAB (by van der Vorst).
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IDR and IDR(s) (continued)

• As a result of these developments the basic IDR-idea was

abandoned for the Bi-CG-approach.

• Recently, Sonneveld and van Gijzen discovered that the

IDR-approach was abandoned too soon and proposed a

generalization of IDR: IDR(s).

• P. SONNEVELD AND M.B. VAN GIJZEN IDR(s): a family of simple

and fast algorithms for solving large nonsymmetric systems

of linear equations

SIAM J. Sci. Comput., 31, pp. 1035-1062, 2008
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The IDR approach for solving Ax = b

Generate residuals rn = b − Axn that are in subspaces Gj of

decreasing dimension.

These nested subspaces are related by

Gj = (I − ωjA)(Gj−1 ∩ S)

where

• S is a fixed proper subspace of CN . S can be taken to be

the orthogonal complement of s randomly chosen vectors

pi, i = 1 · · · s.

• The parameters ωj ∈ C are non-zero scalars.

It can be proved that ultimately rn ∈ {0} (IDR theorem).
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IDR versus Bi-CG

IDR(s) forces the residual to be in an increasingly small

subspace, while Bi-CG constructs a residual in an increasingly

large subspace. Yet, IDR(s) is closely related to:

• Bi-CGSTAB: IDR(1) and Bi-CGSTAB are mathematically

equivalent.

• ML(k)BiCGSTAB (Yeung and Chan, 1999): This method

generalizes Bi-CGSTAB using multiple ’shadow residuals’.

Mathematically IDR(s) and ML(k)BiCGSTAB differ in the

selection of the parameters ωj .

IDR(s) uses simpler recurrences, less vector operations and

memory than ML(k)BiCGSTAB, and is more flexible (e.g. to

avoid break down).
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Prototype IDR(s) algorithm.

while ‖rn‖ > TOL or n < MAXIT do
for k = 0 to s do

Solve c from PHdRnc = PHrn

v = rn − dRnc; t = Av;

if k = 0 then
ω = (tHv)/(tHt);

end if
drn = −dRnc − ωt; dxn = −dXnc + ωv;

rn+1 = rn + drn; xn+1 = xn + dxn;

n = n + 1;

dRn = (drn−1 · · · drn−s); dXn = (dxn−1 · · · dxn−s);

end for
end while
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More information

More information: http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html

• P. SONNEVELD AND M.B. VAN GIJZEN IDR(s): a family of simple

and fast algorithms for solving large nonsymmetric systems

of linear equations

SIAM J. Sci. Comput., 31, pp. 1035-1062, 2008

• The relation of IDR(s) with Bi-CGSTAB, and how to derive

generalizations of Bi-CGSTAB using IDR-ideas can be

found in: Bi-CGSTAB as an induced dimension reduction

method (with Sleijpen).

• A high quality IDR(s) implementation is described in: An

elegant IDR(s) variant that efficiently exploits

bi-orthogonality properties.
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4. ILU-type Preconditioners

A linear system Ax = b is transformed into P−1Ax = P−1b such that

• P ≈ A

• Eigenvalues of P−1A are more clustered than A

• Pz = r cheap to compute

Several approaches, we will discuss here

• ILU preconditioner

• Preconditioned IDR(s) and Bi-CGSTAB comparison

• Block preconditioners
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ILU preconditioners

Incomplete LU preconditioners
A = LU − R, where R consist of dropped entries that are absent in the
index set S(i, j).
S = {(i, j)| aij 6= 0} [Classical ILU by Meijerink and van der Vorst,
1977].

• cheap and easy to implement

• if ‖R‖ is large, give poor convergence (reordering)

• Instability due to large ‖L−1‖ and ‖U−1‖

• Pivoting, reordering, scaling and shifted diagonal schemes are
used to make ILU factors more stable and effective.

[Elman -1989, Chow and Saad -1997]
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SILU preconditioners

New renumbering Scheme
• Renumbering of grid points:

• Sloan algorithm [Sloan - 1986]
• Cuthill McKee algorithms [Cuthill McKee - 1969]

• The unknowns are reordered by p-last or p-last per level methods
• In p-last reordering, first all the velocity unknowns are ordered followed by

pressure unknowns. Usually it produces a large profile but avoids breakdown
of LU decomposition.

• In p-last per level reordering, unknowns are reordered per level such that at
each level, the velocity unknowns are followed by the pressure unknowns.

what are the levels ?
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SILU preconditioner

4 × 4 Q2-Q1 grid
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SILU preconditioners

• In direct solver, reordering improves the profile and bandwidth of
the matrix.

• Improve the convergence of the ILU preconditioned Krylov
subspace method

• Minimizes dropped entries in ILU (‖A − L̄Ū‖F )

• May give stable factorization (‖I −A(L̄Ū)−1‖F )

[Dutto-1993, Benzi et al 1999, Duff and Meurant-1989, Wille-2004,
Bollhöfer and Saad - 2006, Saad -2005]
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SILU preconditioners

• Proposition 1: If we use the p-last ordering and assume that the ILUD
decomposition of F exists then the ILUD decomposition exists because every
column of BT contains a non-zero element . Note that if BT has a zero column
then A is singular.

• Proposition 2: For an arbitrary ordering we suppose that ILUD decomposition
exists for all j < i, where the ith row is related to the continuity equation. If the ith

(pressure) unknown is preceded by at least one velocity unknown with a non-zero
connection to this pressure unknown (so there is one k < i such that ai,k 6= 0),
then the ILUD decomposition exists and di > 0.
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Numerical experiments (SILU preconditioner)

Driven cavity flow problem Backward facing step problem
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The iteration is stopped if the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol.
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Numerical experiments (SILU preconditioner)

• Bandwidth(A)=maxi{βi(A), 1 ≤ i ≤ n}

• Profile(A)=
∑n

i=1
βi(A)

16 × 16 driven cavity flow with Q2-Q1 discretization
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Numerical experiments (SILU preconditioners)

Stokes Problem in a square domain with Bi-CGSTAB,
accuracy = 10−6, Sloan renumbering

Q2 − Q1 Q2 − P1

Grid size p-last p-last per level p-last p-last per level

16 × 16 36(0.11) 25(0.09) 44(0.14) 34(0.13)

32 × 32 90(0.92) 59(0.66) 117(1.08) 75(0.80)

64 × 64 255(11.9) 135(6.7) 265(14) 165(9.0)

128 × 128 472(96) 249(52) 597(127) 407(86)
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Numerical experiments (SILU preconditioners)

Effect of grid increase(Left) and Reynolds number(Right) on inner
iterations for the Navier Stokes backward facing step problem with
accuracy = 10−2 using the p-last-level reordering
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Numerical Experiments (IDR(s))

IDR(s): Top: 32 × 32, Bottom: 64 × 64 driven cavity Stokes flow problem
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Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioner: Comparison of iterative methods for increasing grid size for the
driven cavity Stokes flow problem.

Grid Bi-CGSTAB IDR(4)

Mat.-Vec. (ts) Mat.-Vec. (ts)

16 × 16 38(0.01) 33(0.01)

32 × 32 90(0.14) 75(0.14)

64 × 64 214(1.6) 159(1.4)

128 × 128 512(16) 404(15)

256 × 256 1386(183) 1032(156)
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Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for increasing stretch factor for
the driven cavity Stokes problem.
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Numerical Experiments (IDR(s) vs Bi-CGSTAB)

SILU preconditioned: Comparison of iterative methods for the backward facing step
Stokes problem.

Grid Bi-CGSTAB IDR(s)

Mat.-Vec.(ts) Mat.-Vec.(ts) s

32 × 96 214(1.3) 168(1.26) 4

64 × 96 NC 597(7.7) 4

96 × 96 NC 933(18) 4

128 × 96 NC 1105(31) 8
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Numerical Experiments (IDR(s) vs Bi-CGSTAB(l))

SILU preconditioned: Comparison of iterative methods

Driven Cavity Stokes problem, stretch factor 10

Grid Bi-CGSTAB(l) IDR(s)

Mat.-Vec.(ts) l Mat.-Vec.(ts) s

128 × 128 1104(36.5) 4 638(24.7) 6

256 × 256 5904(810) 6 1749(307) 8

Channel flow Stokes problem, length 100

Grid Bi-CGSTAB(l) IDR(s)

Mat.-Vec.(ts) l Mat.-Vec.(ts) s

64 × 64 1520(12) 4 938(8.7) 8

128 × 128 NC 6 8224(335) 8
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5. Block preconditioners

A = LbDbUb =

2

4

F BT

B 0

3

5 =

2

4

I 0

BM−1
l

I

3

5

2

4

F 0

0 S

3

5

2

4

I M−1
u BT

0 I

3

5

Ml = Mu = F and S = −BF−1BT is the Schur-complement matrix.

Ubt = LbDb =

2

4

F BT

0 Ŝ

3

5 , Lbt = DbUb =

2

4

F 0

B Ŝ

3

5 .

Preconditioners are based on combination of these blocks involve:

Fz1 = r1 The velocity subsystem

S −→ Ŝ

Ŝz2 = r2 The pressure subsystem
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Block preconditioners

Block triangular preconditioners

Pt = Ubt =

2

4

F BT

0 Ŝ

3

5

• Pressure convection diffusion (PCD) [Kay et al, 2002]
Ŝ = −ApF−1

p Qp, Qp is the pressure mass matrix

• Least squares commutator (LSC) [Elman et al, 2002]
Ŝ = −(BQ−1

u BT )(BQ−1
u FQ−1

u BT )−1(BQ−1
u BT ), Qu is the velocity mass

matrix

• Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006]
F is replaced by Fγ = F + γBW−1BT

Ŝ−1 = −(νQ̂−1
p + γW−1), W = Q̂p
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Block preconditioners

SIMPLE-type preconditioners[Vuik et al-2000]

SIMPLE SIMPLER

z = U−1

b L−1

bt r z = U−1

bt L−1

b r

z = z + U−1

b L−1

bt (r −Az)

Mu = D Ml = Mu = D, D = diag(F )

Ŝ = BD−1BT Ŝ = BD−1BT

One Poisson Solve Two Poisson solves

One velocity solve Two velocity solves

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one
or two velocity solves) are identical .
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Improvements in SIMPLE-type preconditioners

We use approximate solvers for subsystems, so flexible
Krylov solvers are required (GCR, FGMRES, GMRESR)

• Relaxation parameter

• hSIMPLER

• MSIMPLER
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Improvements in SIMPLE(R) preconditioners

Relaxation parameter:
• Under-relaxation is well-known in SIMPLE-type methods.

• In SIMPLE preconditioner, velocity relaxation has no effect on the convergence,
therefore only pressure is under-relaxed by a factor ω.
p = p∗ + ωδp, where ω is chosen between 0 and 1.

• ω has no effect on convergence with SIMPLER due to extra pressure correction
step.

• Faster convergence is achieved in some cases.

• Choice of ω is currently based on trial an error.
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Improvements in SIMPLE(R) preconditioners

hSIMPLER preconditioner:

In hSIMPLER (hybrid SIMPLER), first iteration of Krylov method preconditioned with
SIMPLER is done with SIMPLE and SIMPLER is employed afterwards.
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- Faster convergence than SIMPLER
- Effective in the Stokes problem
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Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:
Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.
LSC: Ŝ ≈ −(BQ̂−1

u BT )(BQ̂−1
u FQ̂−1

u
| {z }

BT )−1(BQ̂−1
u BT )

assuming FQ̂−1
u ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂−1
u BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with
Q̂−1

u .

-Convergence better than other variants of SIMPLE
-Cheaper than SIMPLER (in construction) and LSC (per iteration)
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Numerical Experiments (SIMPLE-type preconditioners)

Stokes backward facing step solved with preconditioned GCR(20) with accuracy of 10−6

, PCG used as an inner solver (SEPRAN), Blue: Low inner accuracy , Red: High inner
accuracy

Grid SIMPLE SIMPLER hSIMPLER MSIMPLER

iter. (ts) iter. (ts) iter. (ts) iter. (ts)

8 × 24 39(0.06) 26(0.05) 19(0.03) 11(0.02)

37(0.14) 19(0.07) 17(0.06) 12(0.05)

16 × 46 72(0.6) 42(0.5) 31(0.34) 12(0.1)

68(1.94) 30(0.86) 24(0.68) 15(0.44)

32 × 96 144(8.2) NC 44(5.97) 16(0.9)

117(34) 114(32) 37(10.6) 20(5.75)

64 × 192 256(93) NC 89(141) 23(8.5)

230(547) NC 68(161) 25(60)



40

Numerical Analysis Group, DIAM

Numerical Experiments (SIMPLE type preconditioners)

SIMPLE with relaxation parameter
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Numerical Experiments (SIMPLE type preconditioners)

Effect of relaxation parameter: The Stokes problem solved in Q2-Q1 discretized driven
cavity problem with varying ω: 32 × 32 grid (Left), 64 × 64 grid (Right).
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Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with
preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1 hexahedrons

Grid SIMPLE LSC MSIMPLER

iter. (ts) in-it-u
in-it-p

8 × 8 × 16 44(4) 97
342

16(1.9) 41
216

14(1.4) 28
168

16 × 16 × 32 84(107) 315
1982

29(51) 161
1263

17(21) 52
766

24 × 24 × 48 99(447) 339
3392

26(233) 193
2297

17(77) 46
1116

32 × 32 × 40 132(972) 574
5559

37(379) 233
2887

20(143) 66
1604
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Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in solving the Navier-Stokes problem
with preconditioned GCR(20) with accuracy of 10−2 (SEPRAN) using Q2-Q1
hexahedrons

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 32

100 173(462) 96(162) 321(114)

200 256(565) 145(223) 461(173)

400 399(745) 235(312) 768(267)

32 × 32 × 40

100 240(5490) 130(1637) 1039(1516)

200 397(7040) 193(2251) 1378(2000)

400 675(11000) 295(2800) 1680(2450)
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Numerical Experiments (comparison)

3D Lid driven cavity problem (tetrahedrons):The Navier-Stokes problem is solved with
accuracy 10−4, a linear system at each Picard step is solved with accuracy 10−2 using
preconditioned Krylov subspace methods. Bi-CGSTAB is used as inner solver in block
preconditioners(SEPRAN)

Re LSC MSIMPLER SILU

GCR iter. (ts) GCR iter. (ts) Bi-CGSTAB iter. (ts)

16 × 16 × 16

20 30(20) 20(16) 144(22)

50 57(37) 37(24) 234(35)

100 120(81) 68(44) 427(62)

32 × 32 × 32

20 38(234) 29(144) 463(353)

50 87(544) 53(300) 764(585)

100 210(1440) 104(654) 1449(1116)
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Numerical Experiments (comparison)

2D Lid driven cavity problem on 64 × 64 stretched grid: The Stokes problem is solved
with accuracy 10−6. PCG is used as inner solver in block preconditioners (SEPRAN) .

Stretch factor LSC MSIMPLER SILU

GCR iter. GCR iter. Bi-CGSTAB iter.

1 20 17 96

8 49 28 189

16 71 34 317

32 97 45 414

64 145 56 NC

128 NC 81 NC
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6. Preconditioners for the incompressible Stokes problem

The main motivation behind this work is to develop and test preconditioners for the
variable viscosity Stokes problem.

• The preconditioners that are developed for the incompressible Navier-Stokes
problem or Saddle point problems are also applied to the Stokes problem.

• Block diagonal preconditioner [Rusten and Winther -1992, Silvester and
Wathen-1994]

• Block triangular preconditioner [Bramble and Pasaick-1988, Elman et. al 2005]

• Recent preconditioners [May and Moresi - 2008, Burstedde et. al - 2008, Grinevich
and Olshanskii -2008]
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Preconditioners for the incompressible Stokes problem

Block-triangular preconditioner

PP MM = Ubt =

2

4

F BT

0 −1/νQp

3

5

Qp is the pressure-mass matrix.

• h-independent convergence

• Gives approximately two times faster convergence than the block diagonal
approach [Elman et. al, 2005]

• One Poisson solve and one velocity solve
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Preconditioners for the incompressible Stokes problem

The Schur method

• In this method, instead of solving Ax = b, factorized system is solved by solving
Ax = LbDbUbx = b.

• Ml = Mu = F

• Instead of approximating S in Db, BF−1BT is treated implicitly by computing
BF−1BT p at each step of Krylov method.

• The pressure mass matrix is used as preconditioner for the Schur-complement
system.

• Efficient solver for the velocity subsystem is required.
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Preconditioners for the incompressible Stokes problem

The Schur method

Initialize u(0), p(0) and maxiter (maximum iterations)
Compute: ru = f − Fu(0) − BT p(0)

rp = g − Bu(0)

For k = 0 to maxiter

1. Solve Fuf = ru

2. Solve −BF−1BT pδ = rp − Buf

3. Update uδ = uf − ul, where ul is obtained by solving Ful = BT pδ

4. Update u(k+1) = u(k) + uδ

5. Update p(k+1) = p(k) + pδ

6. Update ru = f − Fu(k+1) − BT p(k+1)

7. Update rp = g − Bu(k+1)

8. If converged Exit

End For
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Scaling

The pressure-mass matrix scaling
The standard pressure-mass matrix is defined independently of the viscosity

(Qp)i,j =

Z

Ω
φiφjdΩ, (1)

In case of variable viscosity, we consider two alternatives:

1. Explicit scaling:

Qpe = S−1
v QpS−1

v , whereSv = diag(
√

ν)

2. Implicitly scaling: This is done at the time of formation of the pressure-mass
matrix. In this case, the smaller value of ν will dominate the definition of Qpi (due
to its inversion) at the nodes that are shared by more elements.
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Scaling

The velocity-mass matrix scaling

• Use of AMG requires a constant number of unknowns per grid point.

• If one velocity component is prescribed, this will lead to only 1(2D) or 2(3D) degrees of freedom on

those points.

• Approximate BC: cnun + σnt = cnū, where cn a large number, ū is the prescribed
value of the normal velocity and σnt is the tangential component of the stress
tensor.

• To get convergence with LSC and MSIMPLER, we must update the velocity mass
matrix by multiplying the entries corresponding to the boundary elements with the
approximate boundary conditions by a factor of cn.
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Scaling

The velocity-mass matrix scaling
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Scaling

System matrix scaling

• In high viscosity contrast problem, if we use convergence criteria based on the L2 norm, some

preconditioners e.g. PMM, lead to fewer iterations. However, an inaccurate solution is obtained with

this convergence criteria.

• If we use a preconditioner for the Schur-complement that involves the diagonal of the velocity matrix

D−1, the error in the iterative method using a direct method for the subsystems becomes small.

This has been verified for LSCD , BD−1BT and SIMPLE.

• We use Sm as scaling matrix given:

Sm =

2

4

p

diag(F ) 0

0
p

diag(BD−1BT )

3

5 .

• We solve S−1
m AS−1

m Smx = S−1
m b

• Convergence criteria is now based on scaled L2 norm
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Numerical Experiments (The Stokes problem, constant ν)

The Stokes driven cavity flow problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem solves and ICCG(0) for the Schur subsystem solves. Solution
accuracy is 10−6.

Preconditioner Grids

32 × 32 64 × 64 128 × 128 256 × 256

iter.(time in seconds)

PMM 11(1.4) 10(5.6) 9(23.6) 9(97)

LSC 10(1.38) 13(8.3) 17(54) 22(319)

LSC∗

D 22(3.2) 37(25) 80(275) 180(2880)

MSIMPLER 13(1.5) 16(8) 22(50) 29(300)

Schur(1) 6(3) 5(10.2) 5(46) 6(221)

Schur(6) 1(2) 1(10.6) 1(53) 1(251)

∗: LSCD uses diagonal of the velocity system in the Schur complement approximation.
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Numerical Experiments (The Stokes problem, constant ν)

Solution of the constant-viscosity Stokes problem with accuracy 10−6: Left, the total
number of iterations required for the velocity subsystem. Right, the total number of
iterations required for the pressure subsystem.
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Numerical Experiments (The Stokes problem, variable ν)

Extrusion problem
A round aluminum rod is heated and pressed
through a die.
The viscosity model used describes
the viscosity as function of shear stress
and temperature,
which are highest at the die where
the aluminum is forced to flow into a
much smaller region.
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Numerical Experiments (The Stokes problem, variable ν)

The variable-viscosity Stokes problem with Q2-Q1 discretization with AMG/CG for the
velocity subsystem and ICCG(0) (PMM, Schur method) or AMG/CG (LSC, LSCD ,
MSIMPLER) for the Schur subsystem. Solution accuracy is 10−6.

Grid ↓ Levels/N PMM LSC LSCD MSIMPLER Schur

tol −→ 10−3 10−3 10−6 10−1, 10−3 10−6

iter.(time in seconds)

66k 3/394 19(51) 11(35) 74(357) 15(35) 1(104)

195k 4/152 18(183) 13(188) 129(2650) 19(138) 1(370)

390k 5/300 18(429) 14(480) > 1000 19(360) 1(869)

595k 5/408 19(743) 15(871) > 1000 19(693) 1(1478)

843k 6/112 19(1229) 15(1406) > 1000 21(989) 1(2686)
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Numerical Experiments (The Stokes problem, variable ν)

Solution of the variable viscosity Stokes problem with accuracy 10−6: Left, the total
number of iterations required for the velocity subsystem. Right, the total number of
iterations required for the pressure subsystem.

66k  195k  390k  595k  843k
0

200

400

600

800

1000

1200

1400

1600

1800

Number of unknowns

N
.
 
o
f
 
A
M
G
/
C
G
 
i
t
e
r
a
t
i
o
n
s

 

 

PMM
LSC
Schur(6)
MSIMPLER

66k  195k  390k  595k  843k
10

1

10
2

10
3

10
4

Number of unknowns

N
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
s

 

 

PMM
LSC
Schur(6)
MSIMPLER



59

Numerical Analysis Group, DIAM

Numerical Experiments (The Stokes problem, jumping ν)

Two dimensional domain for the variable-viscosity Stokes problem (Left). At right, a 2D
geodynamics test model: LVR represents the low viscosity region with density ρ1 = 1

and viscosity ν1 = 1, and HVR denotes the high viscosity region with density ρ2 = 2,
and constant viscosity ν2 ( 1, 103 and 106).
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Numerical Experiments (The Stokes problem, jumping ν)

Iterative solution of the Stokes problem with SINKER configuration , accuracy = 10−6.
Error = ‖pexact − pP MM, LSCD , Schur‖2

ν PMM LSCD Schur

iter. Error iter. Error iter. (inner) Error

30 × 30

ν2 = 106 12 9 × 10−4 26 7 × 10−6 2(18) 2 × 10−8

ν2 = 103 12 2 × 10−5 26 3 × 10−6 2(20) 2 × 10−10

ν2 = 101 11 5 × 10−6 24 1 × 10−6 2(16) 2 × 10−10

60 × 60

ν2 = 106 13 8 × 10−3 40 6 × 10−5 2(19) 5 × 10−8

ν2 = 103 13 3 × 10−5 40 5 × 10−6 2(20) 3 × 10−9

ν2 = 101 13 1 × 10−6 41 3 × 10−6 2(18) 4 × 10−10
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Numerical Experiments (The Stokes problem, jumping ν)

Remark:The Schur method gives more accurate results might be the fact that it uses
subfactors of the system iteratively in a classical way. If that is the case, we may also
expect better results when using Richardson type iterative improvement of the form:

xk+1 = xk + PMM−1(b −Axk).

We observe that Richardson also gives better accuracy than PMM and LSC.
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Conclusions

• In ILU, A new scheme for the renumbering of grid points and reordering of
unknowns is introduced that prevents the break down of the resulting SILU
preconditioner and leads to faster convergence of Krylov subspace methods.

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• In our experiments, MSIMPLER proved to be cheaper than SILU, especially when
the problem is solved with high accuracy.

• PMM shows h-independent convergence for all types of viscosity configurations.
For the problems that require subsystem to be accurately solved, PMM and the
Schur method give similar convergence.

• MSIMPLER shows better performance than LSC. Both have similar convergence
characteristics.

• In a high viscosity contrast problem, the Schur complement matrix must be
approximated by an operator that contains viscosity information for the problem.

• In large viscosity contrast problem,to get results efficiently, the Schur method is
better option to use than the other preconditioners.
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Conclusions

Further research

• To reduce the effect of stretching on convergence of the preconditioned Krylov
subspsce methods.

• Use of deflation-type schemes in the variable discontinuous viscosity Stokes
problem.
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