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Bird’'s Eye View

Comparison of CPU optimized code with respect
to GPU code
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Problem Description

Mass-Conserving Level Set Method to Solve the
Navier Stokes Equation.
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Air bubbles rising in Water.
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Computational Model

Computational Hotspot - Solution of the Pressure Correction
equation in 2D

Boundary

Conditions

1
Vg Vpe) = fla), w e )
7 plw) = glx), = € 00 ©

3
Delft Institute of Applied Mathematics TUDelft



Nature of the Coefficient Matrix

Ax = b, where x! Az > 0 (0)

A Is a sparse matrix with a 5-point stencil. It has a very large
condition number due to a huge jump in the density.

* Condition Number — k(A) := 3=
. o—Azgllz
[roll  —

e Stopping criterion 10~
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Nature of the Coefficient Matrix
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Huge jump at the interface due to contrast in densities.
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A Brief Introduction to the GPU

* SIMD Architecture
* |arge Memory Bandwidth

* User Managed Caches

CPU GPU
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A brief Intro.... Contd.

e Basic Unit of Execution - Thread
e Each Thread Executes a Kernel
e Aggregates of Threads = Blocks
e Shared Memory within a block
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Contd.

A brief Intro....
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A brief Intro.... Contd.

Architecture TeslaC1060 | TeslaC2070(Fermi)
Number of Compute Cores | 240 cores 448 cores
Memory Bandwidth 102Gb/s 144 Gb/s
Double Precision

Throughput(Peak) 78 Gflops/s 515 Gflops/s
Memory 4GB 6GB

Shared Memory / L1cache

configurability No Yes
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A brief Intro.... Contd.

Most Important Optimizations for GPU Code

 Reduce Host-GPU Transfers
 Maximize use of Memory Bandwidth
 Minimize Thread Divergence

o Utilize Shared Memory/ L1 cache based on
kernel
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Control Flow in the Algorithm

Initialization
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Conjugate Gradient with Two Level Preconditioning
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Preconditioning

e Diagonal Preconditioning
e Block Incomplete Cholesky

e Incomplete Poisson(IP)
 Modifications based on IP
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Preconditioning

Block Incomplete Cholesky Preconditioning @ °

Within blocks the computation is sequential

2An Iterative Solution Method for Linear Systems of Which the Coefficient Matrix is a Symmetric M-
Matrix. J.A. Meijerink, H.A.van der Vorst (1977).Math. Comp. (American Mathematical Society)

bIterative methods for sparse linear systems. 2nd ed., Society for Industrial and Applied Mathematics,
Philadelphia, 2003. Yousef Saad
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Preconditioning

Incomplete Poisson |

M =K x K, where K = (I — L * D). (0)
Stencil forA = (—-1,-1,4,—1,—1). (0)
1 1 191 1 1
CorrespondingStencil forM ! = (Z’ 18116 Z) (0)

Drop the lowest terms (i.e.<:).
M~! has the same sparsity pattern as A.
Degree of Parallelism for M ! « r is N.

A Parallel Preconditioned Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform,
M. Ament. PDP 2010
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Preconditioning

Incomplete Poisson Variants @
Scaling of A matrix. A = Dz Ax Dz
As parallel as IP and as effective as Block-1C

Slightly more computations compared to IP.

aA vectorizable variant of some ICCG methods. Henk A. van der Vorst, SIAM Journal of Scientific

Computing. Vol. 3 No. 3 September 1982.
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Deflation

Operations involved in deflation & °
e b= xx
e m = FE"1b

AxZxm

r — W

* w

* w

where, E Is the Galerkin Matrix and Z is the matrix of deflation
vectors.

AEfficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer.

Anal. 2007.
bAn efficient preconditioned CG method for the solution of a class of layered problems with extreme
contrasts in the coefficients. C. Vuik, A. Segal, J.A. Meijerink J. Comput. Phys. 1999.
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Deflation

Stripe-Wise Domains
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Deflation

Efficient Data Structures
. 1052020 s
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Deflation

EfflClent Data Structures

frmaeiaeei

This data Structure has the advantages of the DIA Storage
format?®.

A Efficient Sparse Matrix-Vector Multiplication on CUDA. N. Bell and M. Garland, 2008 , NVIDIA Corpo-
ration, NVR-2008-04
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Deflation

« Breaking Up of Operations
o Stripe-Wise Domains
 Efficient Data Structures
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Results

Single Precision Experiments

SpeedUp and Convergence across GridSizes - Poisson Type Problem

Convergence Rate and SpeedUp across Grid Sizes
DeflatedPreconditioned CG

SpeedUp
Number of Iterations
for Convergence

~16k ~65k ~260k ~1lm

Number of Unknowns

= Number of lterations(for convergence) — SpeedUp

Deflation Vectors are of size 8n. Precision Criteria is 102 till 260k and for 1m itis 104
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Results

Single Precision Experiments
Wall Clock Times across GridSizes - Poisson Type Problem

Wall Clock Times across Grid Sizes

Deflated Preconditioned CG.

2]

©

S -+ CPU
s 1 = GPU
N =]

c 01 ——

) -

c 0.01

= ~16k ~65k ~260k ~1lm

Number of Unknowns

Deflation Vectors are of size 8n.. Precision Criteriais 102 till 260k and for 1m itis 104
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Results

Single Precision Experiments
Accuracy across GridSizes - Poisson Type Problem

Result Accuracy across Grid Sizes

Deflated Preconditioned CG.

1.00E+000
1.00E-001 < CPU
1.00E-002 — GPU
1.00E-003 ¢ /
1.00E-004

~16k ~65k ~260k ~1m

Relative Error Norm(2) of the solution

Number of Unknowns

Deflation Vectors are of size 8n.. Precision Criteriais 102 till 260k and for 1m itis 104
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Results

IP Variants For two Phase Problem - Double Precision

Converegence Rate Improvement

(Comparing Block- IC, IP and IP with scaling)
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Number of Unknowns

lterations required for Convergence
N
o
o

& Block-IC --IP P with scaling

Deflation Vectors are of size 2n. Precision Criteria is 10~6.
Block size is 2n for n X n grid where N = n X n and N is the number of unknowns
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Results

IP Variants  For two Phase Problem - Double Precision

Improvement in Error Norm of the Solution

é (Comparing Block- IC, IP and IP with scaling)
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Deflation Vectors are of size 2n. Precision Criteria is 10~6.
Block size is 2n for n X n grid where N = n X n and N is the number of unknowns
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Results

Double Precision Experiments

SpeedUp and Convergence across GridSizes - Two-Phase Problem

Convergence Rate and SpeedUp across Grid Sizes
DeflatedPreconditioned CG

140 140
L )]
120 120 5 §
5 w58
13oo 100 35
D go 80 92
o i cZ
N 60 60 28
40 40 E oS
| oD W
20 20 <
0 0

~16k ~65k ~260k ~1m
Number of Unknowns

= Number of lterations(for convergence) — SpeedUp

Deflation Vectors are 8n. Density Contrast (1000 : 1). Precision Criteria is 1076,
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Results

Double Precision Experiments
Wall Clock Times across GridSizes - Two-Phase Problem

Wall Clock Times across Grid Sizes

Deflated Preconditioned CG.
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Number of Unknowns

Deflation Vectors are 8n. Density Contrast (1000 : 1). Precision Criteria is 1076,
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Results

Double Precision Experiments
Accuracy across GridSizes - Two-Phase Problem

Result Accuracy across Grid Sizes
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5 Deflated Preconditioned CG.
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Deflation Vectors are 8n. Density Contrast (1000 : 1). Precision Criteria is 1076,
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Conclusions

e Deflation is highly parallelizable.
* Suitable Preconditioning for GPU must be used.

* More optimizations in order for Double Precision results.
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Further Information

* Masters Thesis of Rohit Gupta

http://ta.tw .tudel ft.nl/users/vui k/ numanal / gupta_eng. ht m
e GPU page
http://ta.tw .tudel ft.nl/users/vuik/gpu. htmn

* Open Source GPU software
http://ta.tw .tudel ft.nl/users/vuik/gpu. htm #soft war e
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http://ta.twi.tudelft.nl/users/vuik/numanal/gupta_eng.html
http://ta.twi.tudelft.nl/users/vuik/gpu.html
http://ta.twi.tudelft.nl/users/vuik/gpu.html#software
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