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Messages

1. Incompressible Navier-Stokes are important

2. Much progress in solvers for academic test
problems

3. Transfer methods to industrial problems
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1. Introduction

Flooding of the Netherlands, 1953
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2. Problem

−ν∇2
u+ u.∇u+∇p = f in Ω

∇.u = 0 in Ω.

u is the fluid velocity vector

p is the pressure field

ν > 0 is the kinematic viscosity coefficient ( 1/Re).

Ω ⊂ R
2 or 3 is a bounded domain with the boundary condition:

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN .
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Linear system

Matrix form after linearization and discretization:





F BT

B 0









u

p



 =





f

g





where F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

• F = νA in Stokes problem, A is vector Laplacian matrix

• F = νA+N in Picard linearization, N is vector-convection matrix

• F = νA+N +W in Newton linearization, W is the Newton derivative matrix

• B is the divergence matrix

• Sparse linear system, Symmetric indefinite (Stokes problem), nonsymmetric

otherwise.

• Saddle point problem having large number of zeros on the main diagonal
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3. Krylov Solvers and preconditioners

• Direct method:

To solve Ax = b,

factorize A into upper U and lower L triangular matrices (LUx = b)

First solve Ly = b, then Ux = y

• Classical Iterative Schemes:

Methods based on matrix splitting, generates sequence of iterations

xk+1 = M−1(Nxk + b) = Qxk + s, where A = M −N

Jacobi, Gauss Seidel, SOR, SSOR

• Krylov Subspace Methods:

xk+1 = xk + αkpk
Some well known methods are

CGNR[1975], QMR[1991], CGS[1989], Bi-CGSTAB[1992], GMRES[1986],

FGMRES[1992], GMRESR[1994], GCR[1986], IDR(s)[2007]
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4. Block preconditioners

A = LbDbUb =


 F BT

B 0


 =


 I 0

BM−1

l
I




 F 0

0 S




 I M−1

u BT

0 I




Ml = Mu = F and S = −BF−1BT is the Schur-complement matrix.

Ubt = DbUb =


 F BT

0 Ŝ


 , Lbt = LbDb =


 F 0

B Ŝ


 .

Preconditioners based on a combination of these blocks involve the following

subsystems:

Fz1 = r1 The velocity subsystem

S −→ Ŝ

Ŝz2 = r2 The pressure subsystem
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Block preconditioners

Block triangular preconditioners

Pt = Ubt =


 F BT

0 Ŝ




• Pressure convection diffusion (PCD) [Kay et al, 2002]

Ŝ = −ApF
−1
p Qp, Qp is the pressure mass matrix

• Least squares commutator (LSC) [Elman et al, 2002]

Ŝ = −(BQ−1
u BT )(BQ−1

u FQ−1
u BT )−1(BQ−1

u BT ), Qu is the velocity mass

matrix

• Augmented Lagrangian approach (AL) [Benzi and Olshanskii, 2006]

F is replaced by Fγ = F + γBW−1BT

Ŝ−1 = −(νQ̂−1
p + γW−1), W = Q̂p
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Block preconditioners (SIMPLE)

SIMPLE-type preconditioners[Vuik et al-2000]

SIMPLE SIMPLER

z = U
−1

b
L
−1

bt
r z = U

−1

bt
L
−1

b
r

z = z + U−1

b
L−1

bt
(r −Az)

Mu = D Ml = Mu = D, D = diag(F )

Ŝ = BD−1BT Ŝ = BD−1BT

One Poisson solve Two Poisson solves

One velocity solve Two velocity solves

Lemma: In the SIMPLER preconditioner/algorithm, both variants (one

or two velocity solves) are identical .
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Improvements in SIMPLE(R) preconditioners

MSIMPLER preconditioner:
Making the following changes in SIMPLER leads to the MSIMPLER preconditioner.

LSC: Ŝ ≈ −(BQ̂u
−1BT )(BQ̂u

−1 FQ̂u
−1

︸ ︷︷ ︸B
T )−1(BQ̂u

−1BT )

assuming FQ̂u
−1 ≈ I (time dependent problems with a small time step)

Ŝ = −BQ̂u
−1BT

MSIMPLER uses this approximation for the Schur complement and updates scaled with

Q̂u
−1.

-Convergence better than other variants of SIMPLE

-Cheaper than SIMPLER (in construction) and LSC (per iteration)
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Numerical Experiments (comparison)

3D Backward facing step: Preconditioners used in the Stokes problem with

preconditioned GCR(20) with accuracy of 10−6 (SEPRAN) using Q2-Q1 hexahedrons

Grid SIMPLE LSC MSIMPLER

iter. (ts) in-it-u
in-it-p

8× 8× 16 44(4) 97

342
16(1.9) 41

216
14(1.4) 28

168

16× 16× 32 84(107) 315

1982
29(51) 161

1263
17(21) 52

766

24× 24× 48 99(447) 339

3392
26(233) 193

2297
17(77) 46

1116

32× 32× 40 132(972) 574

5559
37(379) 233

2887
20(143) 66

1604
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Numerical Experiments (comparison)

2D Lid driven cavity problem on 64× 64 stretched grid: The Stokes problem is solved

with accuracy 10−6. PCG is used as inner solver in block preconditioners (SEPRAN) .

Stretch factor LSC MSIMPLER SILU

GCR iter. GCR iter. Bi-CGSTAB iter.

1 20 17 96

8 49 28 189

16 71 34 317

32 97 45 414

64 145 56 NC

128 NC 81 NC
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Augmented Lagrangian [Benzi and Olshanskii, 2006]


F BT

B O




u
p


 =


f
g


 transformed to


F + γBTW−1B BT

B 0




u
p


 =


 f̂

g


 or AALx = b̂,

f̂ = f + γBTW−1B g, and W is non-singular.

Ideal AL preconditioner for AAL is

PIAL =


F + γBTW−1B 0

B −
1

γ
W


 .
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The Augmented Lagrangian method

AAL =


F + γBTW−1B BT

B 0


 (SAL = −B(F + γBTW−1B)−1BT )

PIAL =


F + γBTW−1B 0

B −
1

γ
W


 (Fγ = F + γBTW−1B)

• SAL of AAL is approximated by −
1

γ
W .

• Fγ becomes ill-conditioned for γ → ∞.

• In practice γ = 1, or γ = O(1), and W = Q̂P .

• Open question: fast solution methods for systems with Fγ , which is denser than F

and consists of mixed derivatives.

[1] M. Benzi and M.A. Olshanskii. An augmented Lagrangian-based approach to the

Oseen problem. SIAM J. Sci. Comput., 28:2095-2113, 2006.
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The Augmented Lagrangian method

AAL = [ F+γBTW−1B BT

B 0
] and the ideal AL precondition

PIAL = [
F+γBTW−1B 0

B −

1

γ
W

] includes (in 2D)

• the convection-diffusion block: F = [ F11 O
O F11

],

• the (negative) divergence matrix: B = [B1 B2 ],

• the modified pivot block Fγ =

[
F11+γBT

1
W−1B1 γBT

1
W−1B2

γBT
2
W−1B1 F11+γBT

2
W−1B2

]
.

One approximation of Fγ is F̃γ = [
F11+γBT

1
W−1B1 O

γBT
2
W−1B1 F11+γBT

2
W−1B2

], which leads to

the modified AL preconditioner PMAL for AAL.
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The Augmented Lagrangian method (summary)

PIAL = [
Fγ 0

B −

1

γ
W ] (Fγ = [

F11+γBT
1
W−1B1 γBT

1
W−1B2

γBT
2
W−1B1 F11+γBT

2
W−1B2

])

PMAL = [
F̃γ 0

B −

1

γ
W

] (F̃γ = [
F11+γBT

1
W−1B1 0

γBT
2
W−1B1 F11+γBT

2
W−1B2

])

• systems with F̃γ are easier to be solved, compared to Fγ .

• the number of iterations by using the ideal and modified AL preconditioners are

both independent of the mesh refinement, and nearly independent of the Reynolds

(viscosity) number.

• by using the modified AL preconditioner, there exists an optimal value of γ, which

minimises the number of Krylov subspace iterations. The optimal γ is problem

dependent, but mesh size independent.
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Numerical experiments (Lid driven cavity)

2D lid driven cavity problem. the domain is [0, 1]× [0, 1]. The Reynolds number is

Re = UL/ν, and here U = 1 and L = 1. The stretched grids are generated based on

the uniform Cartesian grids with n× n cells. The stretching function is applied in both

directions with parameters a = 1/2 and b = 1.1

x =
(b+ 2a)c− b+ 2a

(2a+ 1)(1 + c)
, c = (

b+ 1

b− 1
)
x̄−a
1−a , x̄ = 0, 1/n, 2/n, ..., 1.
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Numerical experiments (Lid driven cavity)

Re 100 400 1000 2500⋆ 5000⋆

modified AL preconditioner

Newton iterations: 6 7 7 8 9

GCR iterations: 8 14 21 33 50

total time: 14.8 26.2 74.6 194.2 277.1

modified ’grad-div’ preconditioner

Newton iterations: 6 7 8 9 9

GCR iterations: 10 17 28 53 77

total time: 8.5 15.7 32.7 119.1 167.9

modified SIMPLER preconditioner

Newton iterations: 10 8⋆ 8⋆ 11 15

GCR iterations: 43 82 84 80 90

total time: 68.3 102.9 232.8 203.2 561.6
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5. Maritime Applications

Tanker (block-structured grid)

Model-scale:

Re = 4.6 · 106

2.0m cells

max aspect ratio 1 : 7000

Full-scale:

Re = 2.0 · 109

2.7m cells

max aspect ratio 1 : 930 000
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Discretization

Co-located, cell-centered finite volume discretization of the steady Navier-Stokes

equations with Picard linearization leads to linear system:




Q1 0 0 G1

0 Q2 0 G2

0 0 Q3 G3

D1 D2 D3 C







u1

u2

u3

p




=




f1

f2

f3

g




for brevity:


Q G

D C




f
g




with Q1 = Q2 = Q3.

⇒ Solve system with FGMRES and SIMPLE-type preconditioner

Turbulence equations (k-ω model) remain segregated
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Tanker

Model-scale Re = 4.6 · 106, max cell aspect ratio 1 : 7000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

0.25m 8 1379 25mn 316 29mn

0.5m 16 1690 37mn 271 25mn

1m 32 2442 57mn 303 35mn

2m 64 3534 1h 29mn 519 51mn

Full-scale Re = 2.0 · 109, max cell aspect ratio 1 : 930 000

grid CPU cores SIMPLE KRYLOV-SIMPLER

its Wall clock its Wall clock

2.7m 64 29 578 16h 37mn 1330 3h 05mn
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Augmented Lagrangian for finite volumes

Stabilised coupled velocity-pressure system:

A =


Q G

D C




u

p


 =


f

g


 ,

Stabilization matrix C, is given by

C = Ddiag(Q)−1G+ diag(Q)−1L,

where L is the Laplacian matrix.
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Preconditioners used

PUSER =


Q G

O S̃




AAL1 =


Qγ Gγ

D C




u

p


 =


fγ

g


 ,PMAL1 =


Q̃γ Gγ

O C + 1

γ
W


 ,

with Qγ = Q− γGW−1D, Gγ = G− γGW−1C and fγ = f − γGW−1g.

AAL2 =


Qγ Gγ

Dγ Cγ




u

p


 =


fγ

gγ


 ,PMAL2 =


Q̃γ Gγ

O Cγ + 1

γ
W




with Dγ = D + γCW−1D, Cγ = C + γCW−1C and gγ = g + γCW−1g
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Numerical experiments

Flate plate (academic test problem) in ReFRESCO

PETSc solver

• For the velocity-pressure coupled system: FGMRES with tolerance 0.001.

• For the 3 sub-momentum systems in Q̃γ : GMRES+BJACOBI with tolerance 0.01.

• For the 1 sub-system with the approximation of Schur: GMRES+BJACOBI with

tolerance 0.01.

For the nonlinear iterations, tolerance is 10−10.
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MAL1 preconditioner (choice of γ)

Grid 322 442 642 882 1282

γ = 0.3

nonlinear iter. 112 96 90 88 85

Linear iter. 25 30 35 42 49

γ = 0.4

nonlinear iter. 125 121 116 112 117

Linear iter. 16 18 20 22 23

γ = 0.5

nonlinear iter. 300 300 281 279 270

Linear iter. 7 9 10 10 10

γ = 0.8

nonlinear iter. > 300 > 300 > 300 > 300 > 300

Linear iter. 4 5 5 5 6
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Comparison of preconditioners

Grid 322 442 642 882 1282

PMAL1 for AAL1 with γ = 0.4

nonlinear iter. 125 121 116 112 117

Linear iter. 16 18 20 22 23

PMAL2 for AAL2 with γ = 0.4

nonlinear iter. 118 113 107 108 106

Linear iter. 18 19 21 22 24

PUSER for A

nonlinear iter. 123 99 110 95 92

Linear iter. 20 25 30 50 80
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Number of sub-systems iterations

Grid 322 442 642 882 1282

PMAL1 for AAL1 with γ = 0.4

velocity sub-system iter. 6 9 12 15 20

pressure sub-system iter. 2 2 2 2 2

PMAL2 for AAL2 with γ = 0.4

velocity sub-system iter. 6 9 12 15 20

pressure sub-system iter. 2 2 2 2 3
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Sparsity of the blocks

nz = 5520
0 200 400 600 800 1000

0

200

400

600

800

1000

(a) Q

nz = 15551
0 200 400 600 800 1000

0

200

400

600

800

1000

(b) Qγ = Q− γGW−1D
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Sparsity of the blocks

nz = 3348
0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

(c) C(SPD)
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(d) C + γCW−1C(SPD)
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6. Conclusions

• MSIMPLER is at present the fastest of all SIMPLE-type preconditioners.

• MSIMPLER shows better performance than LSC. Both have similar convergence

characteristics.

• For academic problems (FEM), Modified Augmented Lagrangian (MAL) and

grad-div are nearly independent of the grid size and Reynolds number

• MAL/grad-div are faster than (M)SIMPLER

• Future research: MAL/grad-div for industrial (Maritime) applications (FVM)
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