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Motivation

Achievements on preconditioning Reynolds-Averaged Navier-Stokes
equations:

I New augmented Lagrangian (AL) preconditioner utilizes the
approximation of the Schur complement from the SIMPLE
preconditioner.

I A significantly improved convergence rate.

On preconditioning laminar Navier-Stokes equations, this work is
motivated by the following questions:

I Does the new AL preconditioner still work efficiently?

I Does the utilization of other available Schur complement
approximations in the new AL preconditioner result in a better
performance?

I If so, which is the ”optimal” one?

I what is the effect of the Reynolds number, mesh anisotropy and
refinement on the optimal choice?



Incompressible Navier-Stokes equations

−ν∆u + (u · ∇)u +∇p = f on Ω,

∇ · u = 0 on Ω.

I u: the velocity, p: the pressure, ν: the kinematic viscosity.

I Ω ∈ R2 or 3 is a bounded domain with the boundary ∂Ω

u = g on ∂ΩD , ν
∂u

∂n
− np = 0 on ∂ΩN



Linear system

[
A BT

B − 1
νC

] [
u
p

]
=

[
f
g

]
with A :=

[
A BT

B − 1
νC

]
,

I A : the diagonal blocks Aii correspond to the convection diffusion
operator.

I B, BT : the divergence and gradient matrices.

I C : the stabilization matrix for the Q1-Q1 discretization [Dohrman
2012].

C (macro) = M(macro) − qqT |�k |,

where M(macro) is the 4× 4 macroelement mass matrix and
q = [1/4, 1/4, 1/4, 1/4]T is the local averaging operator.

I A : sparse and non-symmetric.

[Dohrman 2012] C.R. Dohrmann and P.B. Bochev. A stabilized finite element method
for the Stokes problem based on polynomial pressure projections. International Journal
for Numerical Methods in Fluids, 46:183201, 2012.



Block structured preconditioners

The block LDU decomposition of A is

A = LDU =

[
A BT

B − 1
νC

]
=

[
I1 O

BA−1 I2

] [
A O
O S

] [
I1 A−1BT

O I2

]
,

S = −(ν−1C + BA−1BT ) is the so-called Schur complement.

The block structured preconditioners PL and PU

PL = LD =

[
A O

B S̃

]
, PU = DU =

[
A BT

O S̃

]
.

I solve the velocity subsystem with A,

I solve the pressure subsystem with S̃ ≈ S .

How to find a spectrally equivalent and cheap approximation of S .



Block structured preconditioners

For the stabilized system, the available Schur complement approximations are:

I The pressure convection-diffusion operator S̃PCD :

S̃PCD = −LpA−1
p Mp ,

Mp : the pressure mass matrix, Ap : the pressure convection-diffusion operator,
Lp : the pressure Laplacian operators.

I The least-square commutator S̃LSC :

S̃LSC = −(BM̂−1
u BT + C1)(BM̂−1

u AM̂−1
u BT + C2)−1(BM̂−1

u BT + C1),

M̂u : the diagonal approximation of the velocity mass matrix Mu and

C
(macro)
1 =

1

|�k |
· C (macro), C

(macro)
2 =

ν

|�k |2
· C (macro),

I The approximation S̃SIMPLE from the SIMPLE preconditioner:

S̃SIMPLE = −(ν−1C + Bdiag(A)−1BT ).

I The augmented Lagrangian preconditioner (more details on the following slides)



The augmented Lagrangian preconditioner

System

[
A BT

B − 1
νC

] [
u
p

]
=

[
f
g

]
is transformed into

[
Aγ BT

γ

B − 1
νC

] [
u
p

]
=

[
fγ
g

]
with Aγ :=

[
Aγ BT

γ

B − 1
νC

]
,

I Aγ = A + γBTW−1B, BT
γ = BT − γ/νBTW−1C and

fγ = f + γBTW−1g

I γ > 0 and W are scalar and nonsingular matrix parameters.

I the Schur complement of Aγ is Sγ = −(ν−1C + BA−1
γ BT

γ ).



The augmented Lagrangian preconditioner

The ideal AL preconditioner PIAL and its variant, i.e. the modified AL
preconditioner PMAL are based on the block DU decomposition of Aγ

PIAL =

[
Aγ BT

γ

O S̃γ

]
and PMAL =

[
Ãγ BT

γ

O S̃γ

]
,

where S̃γ and Ãγ denote the approximations of Sγ and Aγ , respectively.

Aγ =

[
A1 + γBT

1 W−1B1 γBT
1 W−1B2

γBT
2 W−1B1 A1 + γBT

2 W−1B2

]
( coupling of BT

i Bj (i 6= j))

Ãγ =

[
A1 + γBT

1 W−1B1 γBT
1 W−1B2

O A1 + γBT
2 W−1B2

]
( no coupling of BT

i Bj (i 6= j))



The new Schur approximation in the AL preconditioner

The novel approximation is based on:

Lemma
Assuming that all the relevant matrices are invertible, then the inverse of
Sγ is given by

S−1
γ = S−1(I − γĈW−1)− γW−1,

where S = −(Ĉ + BA−1BT ) denotes the Schur complement of the

original system with A and Ĉ is defined as Ĉ = ν−1C .

Proof.
For the proof we refer to [He 2017].

[He 2017] X. He, C. Vuik and C. Klaij. Block preconditioners for the incompressible
Navier-Stokes equations discretized by a finite volume method. Journal of Numerical
Mathematics, 25:89-105, 2017.



New Schur approximation in the AL preconditioner

New option: S̃−1
γ new = S̃−1(I − γĈW−1)− γW−1.

Substituting the Schur approximations S̃ for the original system with A,
three variants of S̃γ new are derived as

I S̃−1
γ PCD = S̃−1

PCD(I − γĈW−1)− γW−1,

I S̃−1
γ LSC = S̃−1

LSC (I − γĈW−1)− γW−1,

I S̃−1
γ SIMPLE = S̃−1

SIMPLE (I − γĈW−1)− γW−1.

Comments:

I W : the diagonal approximation of the pressure mass matrix, i.e.
W = M̂p = diag(Mp), it is trivial to obtain its inverse.

I The complexity of applying S̃γ new is mainly focused on solving the

system with S̃ .

I No contradictory requirement of the value of γ compared to the old
Schur approximation.



Ole Schur approximation in the AL preconditioner

Old option 1: W1 = γĈ + Mp and S̃γ old = −(Ĉ + γ−1Mp).

Choosing W1 = γĈ + Mp and substituting W1 into

S−1
γ = S−1(I − γĈW−1)− γW−1, leads to

S−1
γ = (γ−1S−1Mp − I )(Ĉ + γ−1Mp)−1

For large values of γ such that ‖ γ−1S−1Mp ‖� 1 we can approximate
Sγ by

S̃γ old = −(Ĉ + γ−1Mp).

Comment:

I W1 = γĈ + Mp is not a practical option since its inverse is needed
in the AL transformation.



Old Schur approximation in the AL preconditioner

Old option 2: W = M̂p = diag(Mp) and S̃γ old = −(Ĉ + γ−1Mp) [Benzi
2011]

Comments:

I The approximation S̃γ old is obtained if and only if W1 = γĈ + Mp

and large values of γ are chosen.

I However, W = M̂p is spectrally equivalent to W1 = γĈ + Mp only
when γ is small.

I it is contradictory to tune the value of γ so that W and S̃γ old

could be simultaneously obtained.

[Benzi 2011] M. Benzi, M.A. Olshanskii, Z. Wang. Modified augmented Lagrangian
preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Meth.
Fluids., 66:486-508, 2011.



Comparison between the Schur approximations in AL

With W = M̂p = diag(Mp) and Ĉ = ν−1C , the Schur approximations in
PMAL are

1. S̃−1
γ PCD = S̃−1

PCD(I − γĈ M̂−1
p )− γM̂−1

p ,

2. S̃−1
γ LSC = S̃−1

LSC (I − γĈ M̂−1
p )− γM̂−1

p ,

3. S̃−1
γ SIMPLE = S̃−1

SIMPLE (I − γĈ M̂−1
p )− γM̂−1

p ,

4. S̃γ old = −(Ĉ + γ−1Mp).

where

1. S̃PCD = −LpA−1
p Mp,

2. S̃LSC = −(BM̂−1
u BT +C1)(BM̂−1

u AM̂−1
u BT +C2)−1(BM̂−1

u BT +C1),

3. S̃SIMPLE = −(Ĉ + Bdiag(A)−1BT ).



Comparison between the Schur approximations in AL

Table: Pressure sub-system ’mass-p’ with S̃γ in PMAL and the systems involved
therein.

’mass-p’ with S̃γ new ’mass-p’ with S̃ systems involved in S̃

S̃γ PCD S̃PCD Lp and Mp

S̃γ LSC S̃LSC (BM̂−1
u BT + C1) twice

S̃γ SIMPLE S̃SIMPLE Ĉ + Bdiag(A)−1BT

’mass-p’ with S̃γ old – systems involved in S̃γ old

S̃γ old – Ĉ + γ−1Mp

I At each Krylov iteration the costs of applying PMAL with S̃γ LSC

and S̃γ PCD are roughly the same and two times of that using

S̃γ SIMPLE and S̃γ old.



Numerical experiments

(1) Flow over a finite flat plate (FP).
Domain: Ω = (−1, 5)× (−1, 1)
Reynolds number: Re = Uref Lref /ν = {102, 103, 104, 105} (Uref = 1, Lref = 5).
The uniform Cartesian grid: 12× 2n · 2n cells
The stretched grid: applying the following stretching function in the y -direction:

y =
(b + 1)− (b − 1)c

(c + 1)
, c = (

b + 1

b − 1
)1−ȳ , ȳ = 0, 1/n, 2/n, ...1, b = 1.01.

(2) Flow over backward facing step (BFS).
Domain: Ω = (−1, 5)× (−1, 1) without the square (−1, 0)× (−1, 0)
Reynolds number: Re = Uref Lref /ν = {102, 103} (Uref = 1, Lref = 2).
The uniform Cartesian grid: 11× 2n · 2n cells

(3) Lid driven cavity (LDC).
Domain: the square cavity (−1, 1)2.
Reynolds number: Re = Uref Lref /ν = {102, 103, 104} (Uref = 1, Lref = 2).
The uniform Cartesian grid: 2n · 2n cells
The stretched grid: applying the following stretching function in both directions:

x =
(b + 2a)c − b + 2a

(2a + 1)(1 + c)
, c = (

b + 1

b − 1
)
x̄−a
1−a , x̄ = 0, 1/n, 2/n, ...., 1, a = 0.5, b = 1.01.



Numerical experiments

Numerical evaluations are classified into four categories as follows.

(C1) On small Reynolds number and uniform grid
FP, BFS and LDC cases: Re = 102 and uniform Cartesian grid.

(C2) On moderate Reynolds number and uniform grid
FP, BFS and LDC cases: Re = 103 and uniform Cartesian grid.

(C3) On moderate Reynolds numbers and stretched grid
FP and LDC cases: Re = 103 and stretched grids.

(C4) On large Reynolds numbers and stretched grid
LDC case:Re = 104 and stretched grid.
FP case: Re = {104, 105} and stretched grid.



Numerical experiments

I The linear system is obtained at the middle step of the whole
nonlinear iterations.

I The relative stopping tolerance to solve the linear system by
GMRES is 10−8.

I The momentum and pressure sub-systems are directly solved.



On small Reynolds number and uniform grid

Table: Re = 102 and uniform grid: the number of GMRES iterations to apply PMAL

with different S̃γ . The corresponding γopt is in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 26(1.e-1) 17(8.e-2) 43(2.e-1) 38(2.e-1)

n = 6 25(1.e-1) 25(8.e-2) 67(2.e-1) 38(2.e-1)

n = 7 25(1.e-1) 26(8.e-2) 100(2.e-1) 38(2.e-1)

BFS case:

n = 5 34(2.e-2) 17(2.e-2) 42(1.e-1) 36(1.e-1)

n = 6 42(3.e-2) 21(2.e-2) 60(1.e-1) 36(1.e-1)

n = 7 45(3.e-2) 22(2.e-2) 87(1.e-1) 36(1.e-1)

LDC case:

n = 6 17(2.e-2) 17(2.e-2) 34(1.e-1) 19(1.e-1)

n = 7 18(2.e-2) 20(2.e-2) 48(1.e-1) 19(1.e-1)

n = 8 18(2.e-2) 22(2.e-2) 63(1.e-1) 19(1.e-1)

I Except S̃γ SIMPLE , the other Schur approximations results in mesh independence.

I S̃γ LSC results in the minimal number of iterations.



On small Reynolds number and uniform grid

Assumption: at each Krylov iteration the costs of applying PMAL with

S̃γ LSC and S̃γ PCD are the same and two times of that using S̃γ SIMPLE

and S̃γ old.

Table: Re = 102 and uniform grid: the total costs of applying PMAL

with different S̃γ and the corresponding γopt on the finest uniform
Cartesian grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 50 52 100 38

BFS case: 90 44 87 36

LDC case: 36 44 63 19

I S̃γ old results in the minimal computational cost, which can be
expected on finer grids due to the mesh independence.



On moderate Reynolds number and uniform grid

Table: Re = 103 and uniform grid: the number of GMRES iterations to apply PMAL

with different S̃γ . The corresponding γopt is in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 54(8.e-3) 29(8.e-3) 34(2.e-2) 76(6.e-2)

n = 6 55(8.e-3) 18(8.e-3) 51(2.e-2) 90(6.e-2)

n = 7 56(8.e-3) 17(8.e-3) 99(2.e-2) 95(6.e-2)

BFS case:

n = 5 66(4.e-3) 45(3.e-3) 49(1.e-2) 71(3.e-2)

n = 6 63(4.e-3) 27(3.e-3) 77(1.e-2) 76(3.e-2)

n = 7 65(3.e-3) 29(3.e-3) 142(1.e-2) 84(3.e-2)

LDC case:

n = 6 30(4.e-3) 54(1.e-3) 66(7.e-3) 36(2.e-2)

n = 7 28(4.e-3) 29(4.e-3) 52(1.e-2) 42(2.e-2)

n = 8 29(4.e-3) 29(4.e-3) 85(1.e-2) 48(2.e-2)

I S̃γ PCD and S̃γ LSC result in the mesh independence.

I S̃γ LSC results in the minimal number of iterations.



On moderate Reynolds number and uniform grid

Table: Re = 103 and uniform grid: the total costs of applying PMAL

with different S̃γ and the corresponding γopt on the finest uniform
Cartesian grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 112 34 99 95

BFS case: 130 58 142 84

LDC case: 58 58 85 48

I S̃γ LSC results in the minimal computational cost, which can be
expected on finer grids due to the mesh independence.



On moderate Reynolds number and stretched grid

Table: Re = 103 and stretched grid: the number of GMRES iterations to apply
PMAL with different S̃γ . The corresponding γopt is in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 59(8.e-3) 90(7.e-3) 37(2.e-2) 69(6.e-2)

n = 6 66(8.e-3) 89(7.e-3) 63(2.e-2) 85(6.e-2)

n = 7 62(8.e-3) 117(6.e-3) 119(2.e-2) 92(6.e-2)

LDC case:

n = 6 65(2.e-3) 98(2.e-3) 57(7.e-3) 69(1.e-2)

n = 7 41(2.e-3) 58(2.e-3) 46(7.e-3) 40(1.e-2)

n = 8 38(2.e-3) 84(2.e-3) 75(7.e-3) 54(1.e-2)

Table: Re = 103 and stretched grid: the total costs of applying PMAL with different
S̃γ and the corresponding γopt on the finest stretched grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 124 234 119 92

LDC case: 76 168 75 54

I S̃γ PCD results in the mesh independence and minimal number of iterations,
which will lead to less computational costs in total on finer grids.



On large Reynolds number and stretched grid

Table: Re = 104 and stretched grid: the number of GMRES iterations to apply
PMAL with different S̃γ . The corresponding γopt is in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case:

n = 5 363(8.e-4) 369(6.e-4) 35(2.e-3) 93(1.e-2)

n = 6 334(8.e-4) 336(6.e-4) 53(3.e-3) 128(2.e-2)

n = 7 346(8.e-4) 374(6.e-4) 83(4.e-3) 192(2.e-2)

LDC case:

n = 6 113(3.e-4) 97(2.e-4) 34(1.e-3) 46(5.e-3)

n = 7 143(3.e-4) 235(2.e-4) 45(1.e-3) 65(5.e-3)

n = 8 159(4.e-4) 309(2.e-4) 80(2.e-3) 106(5.e-3)

Table: Re = 104 and stretched grid: the total costs of applying PMAL with different
S̃γ and the corresponding γopt on the finest stretched grid.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

FP case: 692 748 83 192

LDC case: 318 618 80 106

I No Schur approximation results in mesh indepdence. However, S̃γ SIMPLE results
in the minimal number of iterations and computational costs.



On large Reynolds number and stretched grid

Table: FP and Re = 105: the number of GMRES iterations and total costs to apply
PMAL with different S̃γ . The corresponding γopt is in parentheses.

S̃γ PCD S̃γ LSC S̃γ SIMPLE S̃γ old

iterations:

n = 5 1000+ 1000+ 26(1.e-4) 136(1.e-3)

n = 6 1000+ 1000+ 35(2.e-4) 192(2.e-3)

n = 7 1000+ 1000+ 58(3.e-4) 310(2.e-3)

total costs:

n = 7 2000+ 2000+ 58 310

I On the highest Reynolds number of Re = 105, S̃γ SIMPLE reduces the total
computational costs at least five times.



On large Reynolds number and stretched grid
Figure: FP: plot of the pressure unknown (left) and equally spaced contours of the
horizontal velocity between 0 and 0.95 (right) at different Reynolds numbers.

(a) plot of the pressure at Re = 104
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(b) contours of the velocity u at Re = 104

(c) plot of the pressure at Re = 105

0.350.35 0.35 0.350.650.65 0.65 0.65
0.950.95

0.95 0.95

-1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(d) contours of the velocity u at Re = 105



Summary of the Schur approximations in AL

Table: The optimal Schur approximation S̃γ opt in the modified AL preconditioner on
varying classes of evaluations.

class of evaluations S̃γ opt mesh independence problem independence

Re = 102 and

uniform grid S̃γ old Yes Yes

Re = 103 and

uniform grid S̃γ LSC Yes Yes

Re = 103 and

stretched grid S̃γ PCD Yes Yes

Re ≥ 104 and

stretched grid S̃γ SIMPLE No Yes



Summary of the Schur approximations in AL
Figure: FP and stretched grid: plot of the number of GMRES iterations
preconditioned by PMAL at varying Reynolds numbers.

102 103 104 105

Reynolds number

0

200

400

600

800

1000

nu
m

be
r 

of
 it

er
at

io
ns

100

(a) PMAL with S̃γ PCD
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(b) PMAL with S̃γ LSC
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(c) PMAL with S̃γ SIMPLE
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(d) PMAL with S̃γ old

I S̃γ SIMPLE is robust with respect to the Reynolds number.



Comparison between PMAL and PU

The original system and the block structured preconditioner:

A =

[
A BT

B − 1
ν
C

]
with PU =

[
A BT

O S̃

]
.

The transformed system and the modified AL preconditioner:

Aγ =

[
Aγ BT

γ

B − 1
ν
C

]
with PMAL =

[
Ãγ BT

γ

O S̃γ

]
.

The relation between the two Schur approximations S̃ and S̃γ are:

S̃−1
γ new = S̃−1(I − γĈW−1)− γW−1, W = M̂p = diag(Mp)

linear system preconditioner Schur complement approximations

transformed system with Aγ PMAL S̃γ PCD , S̃γ LSC , S̃γ SIMPLE , S̃γ old

original system with A PU S̃PCD , S̃LSC , S̃SIMPLE



Comparison between PMAL and PU

Table: Re = 104 and stretched grid: the number of GMRES iterations to solve the
transformed system with Aγ preconditioned by PMAL and the number of GMRES
iterations to solve the original system with A preconditioned by PU .

PMAL for Aγ PU for A
S̃γ SIMPLE S̃PCD S̃LSC S̃SIMPLE

LDC case:

n = 6 34(1.e-3) 130 147 83

n = 7 45(1.e-3) 246 307 119

n = 8 80(2.e-3) 364 560 182

FP case:

n = 5 35(2.e-3) 879 661 62

n = 6 53(3.e-3) 1000+ 599 122

n = 7 83(4.e-3) 1000+ 809 229

I On large Reynolds number S̃γ opt = S̃γ SIMPLE .

I On large Reynolds number using PMAL with S̃γ SIMPLE leads to a faster
convergence.



Conclusion and future work

Conclusions:

I We propose three variants based on the new method to approximate
the Schur complement for the AL preconditioner.

I We determine the optimal Schur complement for every class of
tests, which is dependent of the Reynolds number and mesh
anisotropy, but problem independent.

I On large Reynolds numbers the utilization of the Schur
approximation from the SIMPLE preconditioner in the new
approximation of the Schur complement of the AL preconditioner
can significantly reduce the number of iterations.

Future work:

I Evaluate the total wall-clock time of the AL preconditioner with the
considered Schur approximations.
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