
Fast and robust ILU preconditioners on the
GPU

Kees Vuik, Rohit Gupta, Martin van Gijzen

Martijn de Jong, Auke Ditzel (Marin), Auke van der Ploeg (Marin)

Delft University of Technology

Preconditioning 2013, Oxford, UK.

Preconditioning 2013, Oxford, UK. June 19, 2013



Contents

1. Problem Description
2. Neumannn series and deflation
3. MRILU
4. Conclusions

2



Main question

Can ILU preconditioners be combined with
GPU’s?

3



1. Problem Description (Bubbly Flow)

Mass-Conserving Level-Set method to solve the Navier Stokes equation. Marker function φ changes sign at
interface.

S(t) = {x |φ(x , t) = 0}. (1)

Interface is evolved using advection of Level-Set function
∂φ
∂t

+ u.� φ = 0 (2)

1A mass-conserving Level-Set method for modeling of multi-phase flows. S.P. van der Pijl, A. Segal and C. Vuik. International Journal for Numerical Methods
in Fluids 2005; 47:339–361

4



1. Problem Description (Bubbly Flow)

−∇.(
1

ρ(x)
∇p(x)) = f (x), x ∈ Ω (1)

∂
∂n

p(x) = 0, x ∈ ∂Ω (2)

� Pressure-Correction (above) equation is discretized to a linear system Ax = b.
� Most time consuming part is the solution of this linear system
� A is Symmetric Positive-Semi-Definite (SPSD) so Conjugate Gradient is the method of choice.

4



2. Neumannn series and deflation
Truncated Neumann Series Preconditioning1,2

M−1 = K T D−1K , where K = (I − LD−1 + (LD−1)2 + · · · ). (3)
(4)

L is the strictly lower triangular of A,
where D=diag(A).

1. More terms give better approximation.
2. In general the series converges if � LD−1 �∞< 1.
3. As much parallelism on offer as Sparse Matrix Vector Product.

1A vectorizable variant of some ICCG methods. Henk A. van der Vorst. SIAM Journal of Scientific Computing. Vol. 3 No. 3 September 1982.
2Approximating the Inverse of a Matrix for use in Iterative Algorithms on Vector Processors. P.F. Dubois. Computing (22) 1979.

5



Deflation
Background

Removes small eigenvalues from the eigenvalue spectrum of M−1A.
The linear system Ax = b can then be solved by employing the splitting,

x = (I − PT )x + PT x where P = I − AQ. (5)
⇔ Pb = PAx̂ . (6)

Q = ZE−1Z T , E = Z T AZ .
E is the coarse system that is solved every iteration.
Z is the deflation sub-space matrix. It contains an approximation of the eigenvectors of M−1A.
For our experiments Z consists of piecewise constant vectors.

6



Deflation
Deflated Preconditioned Conjugate Gradient Algorithm

1: Select x0. Compute r0 := b − Ax0 and r̂0 = Pr0.
2: Solve My0 = r̂0 and set p0 := y0.
3: for j:=0,..., until convergence do
4: ŵj := PApj

5: αj :=
(r̂j ,yj )
(pj ,ŵj )

6: x̂j+1 := x̂j + αj pj
7: r̂j+1 := r̂j − αj ŵj
8: Solve Myj+1 = r̂j+1

9: βj :=
(r̂j+1,yj+1)
(r̂j ,yj )

10: pj+1 := yj+1 + βj pj
11: end for
12: xit := Qb + PT xj+1

6



Deflation
Operations involved in deflation1 2.

� a1 = Z T p.
� m = E−1a1.
� a2 = AZm.
� ŵ = p − a2.

where, E = Z T AZ is the Galerkin Matrix and Z is the matrix of deflation vectors.

1Efficient deflation methods applied to 3-D bubbly flow problems. J.M. Tang, C. Vuik Elec. Trans. Numer. Anal. 2007.
2An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. C. Vuik, A. Segal, J.A.

Meijerink J. Comput. Phys. 1999.

6



Experiments and Results

Stopping Criteria → �b−Axk�2
�r0� ≤ �

1. � is the tolerance we set for the solution.
2. xk is the solution vector after k iterations of (P)CG.
3. r0 is the initial residual.

7



Experiments and Results
Hardware

1. CPU - single core of E8500-3.16 GHz.
2. GPU - Tesla C2070.

Software

1. Inner System solve on CPU is with CG. On GPU it is an Explicit inverse based solution.
2. First Level Preconditioning on CPU is Incomplete Cholesky (IC). On GPU it is Truncated Neumann

Series based.
3. Deflation operation is highly-optimized on the CPU.
4. All deflation vectors are piece-wise constant.

7



Experiments and Results
Timing and Speedup Definition
Speedup is measured as the ratio of the time taken(T ) to complete k iterations (of the
DPCG method) on the two different architectures,

Speedup =
TCPU
TGPU

(5)

� Number of Unknowns = 1283.
� Tolerance set to 10−6.
� Density Contrast is 10−3

Naming deflation vectors
� SD-i -> Sub-domain deflation with i vectors.
� LS-i -> Level-Set deflation with i vectors.
� LSSD-i -> Level-Set Sub-domain deflation with i vectors.

7



Experiments and Results
9 bubbles - 64 Sub-domains

CPU GPU-CUSP
DICCG(0) DPCG(neu2)

SD-64 SD-63 LSSD-135
Number of Iterations 472 603 136

Total Time 81.39 13.61 5.58
Iteration Time 81.1 10.61 2.48

Speedup - 7.64 32.7

Table : 9 bubbles. Two deflation variants. GPU and CPU Execution Times and Speedup.64 sub-domains.

7



Experiments and Results
9 bubbles - 512 Sub-domains

CPU GPU-CUSP
DICCG(0) DPCG(neu2)
SD-512 SD-511 LSSD-583

Number of Iterations 67 81 81
Total Time 12.51 4.56 4.62

Iteration Time 12.18 1.56 1.62
Speedup - 7.81 7.52

Table : 9 bubbles. Two deflation variants. GPU and CPU Execution Times and Speedup.512 sub-domains.

7



June 19, 2013 8

Delft Institute of Applied Mathematics

3. MRILU

• Interactive waves in ship simulator

• Properties of the system matrix

• The RRB solver

• Special ordering

• CUDA implementation

• Results (solver speedup)



June 19, 2013 9

Delft Institute of Applied Mathematics

Interactive waves in ship simulator

Linearized Variational Boussinesq equations:

∂ζ

∂t
+∇ · (ζU + h∇ϕ− hD∇ψ) = 0, (1a)

∂ϕ

∂t
+ U ·∇ϕ+ gζ = −Ps, (1b)

Mψ +∇ · (hD∇ϕ−N∇ψ) = 0. (1c)

After discretization (FVM for space, Leapfrog for time):

S %ψ = b, (2)

dq

dt
= Lq+ f . (3)



June 19, 2013 10

Delft Institute of Applied Mathematics

Properties of the system matrix

The system matrix S is given by a 5-point stencil:









0 −∆x
∆y

NN 0

−
∆y
∆x

NW
∆x
∆y

NN +
∆y
∆x

NE +∆x∆yMC + ∆x
∆y

NS +
∆y
∆x

NW −
∆y
∆x

NE

0 −∆x
∆y

NS 0









.

Matrix S is:

• real-valued, sparse (5-point, pentadiagonal)

• diagonally dominant (not very strong for small mesh sizes)

• symmetric positive definite (SPD)

• quite large (in the order of millions by millions)



June 19, 2013 11

Delft Institute of Applied Mathematics

The RRB-solver (1)

The RRB-solver:

• is a PCG-type solver (preconditioned conjugated

gradients)

• uses as preconditioner: the RRB-method

RRB stands for “Repeated Red-Black”.

The RRB-method determines an incomplete factorization:

S = LDLT + R =⇒ M = LDLT ≈ S



June 19, 2013 12

Delft Institute of Applied Mathematics

The RRB-solver (2)

As the name RRB reveals: multiple levels

Therefore the RRB-solver has good scaling behaviour

(Multigrid)

Method of choice because:

• shown to be robust for all of MARIN’s test problems

• solved all test problems up to 1.5 million nodes within 7

iterations(!)



June 19, 2013 13

Delft Institute of Applied Mathematics

Special ordering (1)

An 8× 8 example of the RRB-numbering process

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

49 50

51 52

53 54

55 56

57 58

59 60

63 61

62 64

All levels combined:



June 19, 2013 14

Delft Institute of Applied Mathematics

Special ordering (2)

Effect on sparsity pattern of matrix S:

Lexicographic

becomes

RRB-numbering



June 19, 2013 15

Delft Institute of Applied Mathematics

Special ordering (3)

Sparsity pattern of matrix S versus L+D + LT

(recall preconditioner M = LDLT )

becomes

In the blue shaded areas fill-in has been dropped (lumping)



June 19, 2013 16

Delft Institute of Applied Mathematics

CUDA implementation (1)

Besides the typical Multigrid issues such as idle cores on the coarsest

levels, in CUDA the main problem was getting “coalesced memory

transfers”.

Why is that?

Recall the RRB-numbering: the number of nodes becomes 4× smaller

on every next level:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

41 42 43 44

45 46 47 48

(1)

49 50

51 52

53 54

55 56

57 58

59 60

(2)

63 61

62

(3)

64

(4)



June 19, 2013 17

Delft Institute of Applied Mathematics

CUDA implementation (2)

New storage scheme: r1/r2/b1/b2

Nodes are divided into four groups:

r1 b1

r2b2
r1 b1

b2

r1 b1

b2

r2

=⇒

Next level

r1 b1

b2 r2



June 19, 2013 18

Delft Institute of Applied Mathematics

CUDA implementation (3)

The r1/r2/b1/b2-storage scheme

• is applied on every next coarser level till the point that the

remaining level is smaller than 32× 32 elements; the last levels

are solved in one go on 1 streaming multiprocessor (SM)

exploiting the benefits of cache

• almost comes for free (only at the beginning and ending of CG we

have some overhead due to reordering of the data)

• allows for coalesced memory read and write operations

throughout the entire CG algorithm which yields optimal

throughput



June 19, 2013 19

Delft Institute of Applied Mathematics

Test problems

• Including: 2D Poisson, Gelderse IJssel (NL), Plymouth

Sound (UK)

• Realistic domains up to 1.5 million nodes



June 19, 2013 20

Delft Institute of Applied Mathematics

Testing method

• The 2D Poisson problem was used for throughput

analysis of the CUDA RRB-solver

• The realistic test problems were used for detailed time

measurements, number of CG-iterations, etc.

• Optimized C++ RRB-solver on 1 core of CPU

(Xeon W3520 @ 2.67 GHz)

• CUDA RRB-solver on all cores of GPU (GeForce

GTX 580)



June 19, 2013 21

Delft Institute of Applied Mathematics

Results (1)

IJssel Plymouth Presto

Size CUDA C++ CUDA C++ CUDA C++

100k 2.1 47.3 1.9 11.5 1.9 10.3

200k 2.8 83.8 2.6 57.7 2.7 22.3

500k 4.8 130.4 4.7 71.5 4.7 64.6

1M 7.7 266.3 7.9 178.3 7.9 148.0

1.5M 10.7 347.3 10.6 298.5 11.6 219.0

Average time in ms (1000 runs).



June 19, 2013 22

Delft Institute of Applied Mathematics

Results (2)

0

5

10

15

20

25

30

35

IJssel

Plymouth

Presto

S
p

e
e

d
u

p

100k 200k 500k 1M 1.5M

Speed up numbers for the realistic test problems.



June 19, 2013 23

Delft Institute of Applied Mathematics

4. Conclusions

• ILU type preconditioners can be used on GPU’s by a

Neumann series approach

• Deflation type preconditioners are very suitable for

GPU’s

• The combination of Neumann series and Deflation

preconditioners leads to robust and fast solvers on the

GPU

• A special ordering of a red black reordering can lead to

speedup of a factor 30-40 on the GPU.



June 19, 2013 24

Delft Institute of Applied Mathematics

Main question

Can ILU preconditioners be

combined with GPU’s?



June 19, 2013 25

Delft Institute of Applied Mathematics

Main question

Can ILU preconditioners be

combined with GPU’s?

YES



June 19, 2013 26

Delft Institute of Applied Mathematics

References

• H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz

Krylov solver preconditioned by a shifted Laplace multigrid method Journal of

Computational and Applied Mathematics, 236, pp. 281-293, 2011

• R. Gupta, M.B. van Gijzen and C. Vuik 3D Bubbly Flow Simulation on the GPU -

Iterative Solution of a Linear System Using Sub-domain and Level-Set Deflation,

21st Euromicro International Conference on Parallel, Distributed and

Network-Based Processing (PDP), 2013, ISBN 978-1-4673-5321-2, pp. 359-366,

2013

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6498576

• M. de Jong Developing a CUDA solver for large sparse matrices for MARIN, MSc

Thesis, Delft University of Technology, 2012

http://ta.twi.tudelft.nl/nw/users/vuik/numanal/jong_afst.pdf



June 19, 2013 1

Delft Institute of Applied Mathematics



June 19, 2013 2

Delft Institute of Applied Mathematics



June 19, 2013 3

Delft Institute of Applied Mathematics



June 19, 2013 4

Delft Institute of Applied Mathematics



June 19, 2013 5

Delft Institute of Applied Mathematics



June 19, 2013 6

Delft Institute of Applied Mathematics



June 19, 2013 7

Delft Institute of Applied Mathematics


