Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions

Various ways to use a second level preconditioner

C. Vuik ¹, J.M. Tang ¹, R. Nabben ², and Y. Erlangga ³

¹ Delft University of Technology Delft Institute of Applied Mathematics

²Technische Universität Berlin Institut für Mathematik

³University of British Columbia Department of Earth and Ocean Sciences

SIAM CSE 2009 March 2-6, 2009

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions

Outline

Theoretical comparison

4 Numerical comparison

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
000000				
Introduction				

Tomography scans of bitumen species

Mechanical problem

Collaboration with: Tom Jönsthövel, Martin van Gijzen and Tom Scarpas

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions O
Introduction				
2D simplifica	ation			

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
000000	000000	0000	000000	
Introduction				

Convergence of PCG with various size of the jumps

5/28

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
000000	000000	0000	000000	
Introduction				

Convergence of Deflated PCG

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
0000000	000000	0000	000000	
Introduction				

Preconditioned Conjugate Gradient Method

Preconditioned Conjugate Gradients Method (PCG)¹

Solve iteratively:

$$M^{-1}Ax = M^{-1}b$$

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

- Mz = y is relatively easy to solve
- $M^{-1}A$ has a smaller condition number than A

Theorem ²

Exact error of PCG after iteration *j*:

$$||\mathbf{x} - \mathbf{x}_j||_{\mathcal{A}} \leq 2||\mathbf{x} - \mathbf{x}_0||_{\mathcal{A}} \left(\frac{\sqrt{\tilde{\kappa}(M^{-1}\mathcal{A}) - 1}}{\sqrt{\tilde{\kappa}(M^{-1}\mathcal{A}) + 1}}\right)^j$$

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
Introduction				
Precondition	ed Conjugate	Gradient Method		

Problem of PCG

The spectrum of $M^{-1}A$ contains a number of small eigenvalues

Consequence

 $ilde{\kappa}$ $(M^{-1}A)$ is large $\ o$ Slow convergence of the iterative process

Question

Can the convergence of PCG be improved by eliminating those small eigenvalues in some way?

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions O
Introduction				
Deflated PC	G			

History			
	CG	Ar	1950
	Preconditioned CG	M ^{−1} Ar	1980
	Block Preconditioned CG	$\sum_{i=1}^{r} (M_i^{-1}) Ar$	1990
	Block Preconditioned Deflated CG	$\sum_{i=1}^{r} (M_i^{-1}) PAr$	2000

Introduction	Two level PCG ●೦೦೦೦೦೦	Theoretical comparison	Numerical comparison	Conclusions
Two level PCG				
Definitions				

Given are

SPD coefficient matrix, $A \in \mathbb{R}^{n \times n}$ projection subspace matrix, $Z \in \mathbb{R}^{n \times k}$, with full rank

Projection operator

Define $E \in \mathbb{R}^{k \times k}$, $Q \in \mathbb{R}^{n \times n}$, and the projection matrix, $P \in \mathbb{R}^{n \times n}$, as follows:

$$P := I - AQ$$
, $Q := ZE^{-1}Z^T$, $E := Z^T AZ$.

In addition, $M \in \mathbb{R}^{n \times n}$ is an SPD matrix that is called the preconditioner.

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
	000000			
Two level PCG				

Properties of the projection operators

Lemma

Let A, Z, Q and P be as in the previous definition. Then, the following equalities hold:

(a) $P = P^2$; (b) $PA = AP^T$; (c) $P^T Z = \mathbf{0}, P^T Q = \mathbf{0}$; (d) $PAZ = \mathbf{0}, PAQ = \mathbf{0}$; (e) $QA = I - P^T$, QAZ = Z, QAQ = Q; (f) $Q^T = Q$.

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
	000000			
Two level PCG				

Two-Level PCG methods

List of considered methods

Name	Method	Operator	References
PREC	Traditional Preconditioned CG	M^{-1}	Go96L, Mei77V
AD	Additive Coarse-Grid Correction	$M^{-1} + Q$	Bra86PS,Tos05W
DEF1	Deflation Variant 1	$M^{-1}P$	Vui99SM
DEF2	Deflation Variant 2	$P^T M^{-1}$	Kol98,Nic87
			Sa00YEG
A-DEF1	Adapted Deflation Variant 1	$M^{-1}P + Q$	Smi96BG, Tro01OS
A-DEF2	Adapted Deflation Variant 2	$P^T M^{-1} + Q$	Smi96BG, Tro01OS
BNN	Abstract Balancing	$P^T M^{-1} P + Q$	Man93
R-BNN1	Reduced Balancing Variant 1	$P^T M^{-1} P$	-
R-BNN2	Reduced Balancing Variant 2	$P^T M^{-1}$	Man93,Tos05W

Introduction	Two level PCG ○○○●○○○	Theoretical comparison	Numerical comparison	Conclusions
Two level PCG				

General Two-Level PCG Method for solving Ax = b

Two-Level PCG

1: Select arbitrary
$$\bar{x}$$
 and $\mathcal{V}_{start}, \mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3, \mathcal{V}_{en}$
2: $x_0 := \mathcal{V}_{start}, r_0 := b - Ax_0$
3: $y_0 := \mathcal{M}_1 r_0, p_0 := \mathcal{M}_2 y_0$
4: for $j := 0, 1, \dots$, until convergence do
5: $w_j := \mathcal{M}_3 A p_j$
6: $\alpha_j := (r_j, y_j)/(p_j, w_j)$
7: $x_{j+1} := x_j + \alpha_j p_j$
8: $r_{j+1} := r_j - \alpha_j w_j$
9: $y_{j+1} := \mathcal{M}_1 r_{j+1}$
10: $\beta_j := (r_{j+1}, y_{j+1})/(r_j, y_j)$
11: $p_{j+1} := \mathcal{M}_2 y_{j+1} + \beta_j p_j$
12: end for
13: $x_h := \mathcal{V}_{end}$

Introduction	Two level PCG ○○○○●○○	Theoretical comparison	Numerical comparison	Conclusions
Two level PCG				
Choices o	f $\mathcal{V}_{\scriptscriptstyle{ ext{start}}}, \mathcal{M}_{1}, \mathcal{M}_{2}$	$,\mathcal{M}_{3},\mathcal{V}_{end}$ for each r	method	

Choices

Method	\mathcal{V}_{start}	\mathcal{M}_1	\mathcal{M}_2	\mathcal{M}_3	\mathcal{V}_{end}
PREC	Ā	M^{-1}	1	1	<i>x</i> _{<i>j</i>+1}
AD	x	$M^{-1} + Q$	1	1	x_{j+1}
DEF1	Ā	M^{-1}	1	Р	$Qb + P^T x_{i+1}$
DEF2	$Qb + P^T \bar{x}$	M^{-1}	P^T	1	<i>x</i> _{<i>j</i>+1}
A-DEF1	x	$M^{-1}P + Q$	1	1	<i>x</i> _{<i>j</i>+1}
A-DEF2	$Qb + P^T \bar{x}$	$P^T M^{-1} + Q$	1	1	<i>x</i> _{j+1}
BNN	x	$P^T M^{-1} P + Q$	1	1	<i>x</i> _{<i>i</i>+1}
R-BNN1	$Qb + P^T \bar{x}$	$P^T M^{-1} P$	1	1	x_{i+1}
R-BNN2	$Qb + P^T \bar{x}$	$P^T M^{-1}$	1	1	x_{j+1}

Introduction	Two level PCG ○○○○○●○	Theoretical comparison	Numerical comparison	Conclusions O
Two level PCG				
Choices for 2	Z			

Choices

- Z is sufficiently sparse, so that Z and AZ can be stored in two vectors;
- Z is full, so that Z and AZ are full matrices.

Motivation

- DDM, the columns of Z correspond to subdomains
- (approximated) eigenvector deflation methods

Costs to compute $Z^T y$ or (AZy)

- one inner product
- one matrix vector multiplication

Introduction	Two level PCG ○○○○○○●	Theoretical comparison	Numerical comparison	Conclusions
Two level PCG				

Extra computational cost per iteration of the two-level PCG methods

 $\mathsf{IP}=\mathsf{inner}\ \mathsf{products},\ \mathsf{MVM}=\mathsf{matrix}\mathsf{-}\mathsf{vector}\ \mathsf{multiplications},\ \mathsf{VU}=\mathsf{vector}\ \mathsf{updates}\ \mathsf{and}\ \mathsf{CSS}=\mathsf{coarse}\ \mathsf{system}\ \mathsf{solves}$

	Theor	у	Impler	nentati	on
Method	<i>Р</i> у, <i>Р</i> ^т у	Qy	IP / MVM	VU	CSS
AD	0	1	2	0	1
DEF1	1	0	2	1	1
DEF2	1	0	2	1	1
A-DEF1	1	1	3	1	1
A-DEF2	1	1	4	1	2
BNN	2	1	5	2	2
R-BNN1	2	0	4	2	2
R-BNN2	1	0	2	1	1

Introduction	Two level PCG	Theoretical comparison ●○○○	Numerical comparison	Conclusions
Theoretical comparison				
Comparison				

Theorem

The following two statements hold:

•
$$\sigma (M^{-1}PA) = \sigma (P^T M^{-1}A) = \sigma (P^T M^{-1}PA);$$

•
$$\sigma ((P^T M^{-1}P + Q)A) = \sigma ((M^{-1}P + Q)A) = \sigma ((P^T M^{-1} + Q)A)$$

Interpretation

DEF1, DEF2, R-BNN1, and R-BNN2 have identical spectra, and the same is true for BNN, A-DEF1, and A-DEF2

Introduction	Two level PCG	Theoretical comparison ○●○○	Numerical comparison	Conclusions O
Theoretical comparison				
Comparison				

Theorem

Let the spectra of DEF1 and BNN be given by

$$\sigma(M^{-1}PA) = \{\lambda_1, \dots, \lambda_n\}, \quad \sigma(P^T M^{-1}PA + QA) = \{\mu_1, \dots, \mu_n\},$$

respectively. Then, the eigenvalues within these spectra can be ordered such that the following statements hold:

•
$$\lambda_i = 0$$
 and $\mu_i = 1$, for $i = 1, ..., k$;

•
$$\lambda_i = \mu_i$$
, for $i = k + 1, ..., n$.

Introduction	Two level PCG	Theoretical comparison ○○●○	Numerical comparison	Conclusions O
Theoretical comparison				
Comparison				

Theorem

Suppose that the spectrum of DEF1, DEF2, R-BNN1, or R-BNN2 is

$$\{0,\ldots,0,\lambda_{k+1},\ldots,\lambda_n\}$$
, with $\lambda_{k+1} \leq \lambda_{k+2} \leq \ldots \leq \lambda_n$

and the spectrum of BNN, A-DEF1, or A-DEF2 is

$$\{1, \ldots, 1, \mu_{k+1}, \ldots, \mu_n\}$$
, with $\mu_{k+1} \leq \mu_{k+2} \leq \ldots \leq \mu_n$.

Then, $\lambda_i = \mu_i$ for all $i = k + 1, \ldots, n$.

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
		0000		
Theoretical comparison				

Equivalent methods

Theorem

Let $\bar{x} \in \mathbb{R}^n$ be an arbitrary vector. The following methods produce exactly the same iterates in exact arithmetic:

- BNN with $V_{start} = Qb + P^T \bar{x}$;
- DEF2, A-DEF2, R-BNN1 and R-BNN2 (with $V_{start} = Qb + P^T \bar{x}$);
- DEF1 (with $V_{start} = \bar{x}$) whose iterates are based on $Qb + P^T x_{i+1}$.

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
Numerical comparison				

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
			000000	
Numerical comparison				

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions ○
Numerical comparison				

Geometry of subdomains

	-		
Ω_1			
Ω_2		Ω_1	Ω_2
Ω_3			
Ω_4		Ω_3	Ω_4
Ω_5			
(a) Porous media problem.		(b) Bubbly	low problem.

Figure: Geometry of subdomains Ω_j . Number of subdomains is fixed in the porous media problem, whereas it can be varied in the bubbly flow problem.

Introduction	Two level PCG	Theoretical comparison	Numerical comparison ○○○●○○○	Conclusions O
Numerical comparison				
Standard pa	rameters			

24/28 Figure: Relative errors in 2-norm during the iterative process, for the porous media problem with

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
0000000	0000000	0000	0000000	0
Numerical comparison				

Approximate coarse solves

25/28 Figure: Relative errors in 2-norm during the iterative process for the porous media problem with =

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
Numerical comparison				

Severe termination criteria

26/28 Figure: Relative 2-norm errors during the iterative process for the porous media problem with 🚊 🔊 🤉

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
0000000	0000000	0000	000000	0
Numerical comparison				

Perturbed starting vectors

Introduction	Two level PCG	Theoretical comparison	Numerical comparison	Conclusions
				•
Conclusions				
Conclusions				

Conclusions

- Various methods from deflation, additive coarse grid correction and balancing can be written in one framework
- DEF1, DEF2, R-BNN1, and R-BNN2 have identical spectra
- BNN, A-DEF1, and A-DEF2 have identical spectra
- Theoretically the methods are very close with respect to convergence
- With respect to cost and robustness of implementation there are serious differences
- A-DEF2 seems to be the most robust and fastest method

Further reading

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- http://ta.twi.tudelft.nl/nw/users/vuik/papers/Tan07NVE.pdf accepted for publication in Journal of Scientific Computing