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Introduction

Tomography scans of bitumen species

Mechanical problem

Collaboration with: Tom Jönsthövel, Martin van Gijzen and Tom Scarpas
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Introduction

2D simplification
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Introduction

Convergence of PCG with various size of the jumps
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Introduction

Convergence of Deflated PCG
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Introduction

Preconditioned Conjugate Gradient Method

Preconditioned Conjugate Gradients Method (PCG)1

Solve iteratively:
M−1Ax = M−1b

where M is a traditional preconditioner that resembles A

Requirements for Preconditioner M

Mz = y is relatively easy to solve

M−1A has a smaller condition number than A

Theorem 2

Exact error of PCG after iteration j :

||x − xj ||A ≤ 2||x − x0||A

 

p

κ̃(M−1A) − 1
p

κ̃(M−1A) + 1

!j
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Introduction

Preconditioned Conjugate Gradient Method

Problem of PCG

The spectrum of M−1A contains a number of small eigenvalues

Consequence

κ̃
`

M−1A
´

is large → Slow convergence of the iterative process

Question

Can the convergence of PCG be improved by eliminating those small eigenvalues in
some way?
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Introduction

Deflated PCG

History

CG Ar 1950

Preconditioned CG M−1Ar 1980

Block Preconditioned CG
r
P

i=1
(M−1

i )Ar 1990

Block Preconditioned Deflated CG
r
P

i=1
(M−1

i )PAr 2000

9 / 28



Introduction Two level PCG Theoretical comparison Numerical comparison Conclusions

Two level PCG

Definitions

Given are

SPD coefficient matrix, A ∈ R
n×n

projection subspace matrix, Z ∈ R
n×k , with full rank

Projection operator

Define E ∈ R
k×k , Q ∈ R

n×n, and the projection matrix, P ∈ R
n×n, as follows:

P := I − AQ, Q := ZE−1Z T , E := Z T AZ .

In addition, M ∈ R
n×n is an SPD matrix that is called the preconditioner.

10 / 28



Introduction Two level PCG Theoretical comparison Numerical comparison Conclusions

Two level PCG

Properties of the projection operators

Lemma

Let A, Z , Q and P be as in the previous definition. Then, the following equalities hold:

(a) P = P2;

(b) PA = APT ;

(c) PT Z = 0, PT Q = 0;

(d) PAZ = 0, PAQ = 0;

(e) QA = I − PT , QAZ = Z , QAQ = Q;

(f) QT = Q.
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Two level PCG

Two-Level PCG methods

List of considered methods

Name Method Operator References

PREC Traditional Preconditioned CG M−1 Go96L, Mei77V
AD Additive Coarse-Grid Correction M−1 + Q Bra86PS,Tos05W
DEF1 Deflation Variant 1 M−1P Vui99SM
DEF2 Deflation Variant 2 PT M−1 Kol98,Nic87

Sa00YEG
A-DEF1 Adapted Deflation Variant 1 M−1P + Q Smi96BG, Tro01OS
A-DEF2 Adapted Deflation Variant 2 PT M−1 + Q Smi96BG, Tro01OS
BNN Abstract Balancing PT M−1P + Q Man93
R-BNN1 Reduced Balancing Variant 1 PT M−1P –
R-BNN2 Reduced Balancing Variant 2 PT M−1 Man93,Tos05W
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Two level PCG

General Two-Level PCG Method for solving Ax = b

Two-Level PCG

1: Select arbitrary x̄ and Vstart,M1,M2,M3,Vend

2: x0 := Vstart, r0 := b − Ax0
3: y0 := M1r0, p0 := M2y0
4: for j := 0, 1, . . . , until convergence do
5: wj := M3Apj
6: αj := (rj , yj )/(pj , wj )
7: xj+1 := xj + αj pj
8: rj+1 := rj − αjwj
9: yj+1 := M1rj+1

10: βj := (rj+1, yj+1)/(rj , yj )
11: pj+1 := M2yj+1 + βjpj
12: end for
13: xit := Vend
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Two level PCG

Choices of Vstart,M1,M2,M3,Vend for each method

Choices

Method Vstart M1 M2 M3 Vend

PREC x̄ M−1 I I xj+1
AD x̄ M−1 + Q I I xj+1

DEF1 x̄ M−1 I P Qb + PT xj+1
DEF2 Qb + PT x̄ M−1 PT I xj+1

A-DEF1 x̄ M−1P + Q I I xj+1
A-DEF2 Qb + PT x̄ PT M−1 + Q I I xj+1

BNN x̄ PT M−1P + Q I I xj+1
R-BNN1 Qb + PT x̄ PT M−1P I I xj+1
R-BNN2 Qb + PT x̄ PT M−1 I I xj+1
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Two level PCG

Choices for Z

Choices

Z is sufficiently sparse, so that Z and AZ can be stored in two vectors;

Z is full, so that Z and AZ are full matrices.

Motivation

DDM, the columns of Z correspond to subdomains

(approximated) eigenvector deflation methods

Costs to compute Z T y or (AZy)

one inner product

one matrix vector multiplication
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Two level PCG

Extra computational cost per iteration of the two-level PCG methods

IP = inner products, MVM = matrix-vector multiplications, VU = vector updates and
CSS = coarse system solves

Theory Implementation
Method Py , PT y Qy IP / MVM VU CSS

AD 0 1 2 0 1
DEF1 1 0 2 1 1
DEF2 1 0 2 1 1
A-DEF1 1 1 3 1 1
A-DEF2 1 1 4 1 2
BNN 2 1 5 2 2
R-BNN1 2 0 4 2 2
R-BNN2 1 0 2 1 1

16 / 28



Introduction Two level PCG Theoretical comparison Numerical comparison Conclusions

Theoretical comparison

Comparison

Theorem

The following two statements hold:

σ
`

M−1PA
´

= σ
`

PT M−1A
´

= σ
`

PT M−1PA
´

;

σ
`

(PT M−1P + Q)A
´

= σ
`

(M−1P + Q)A
´

= σ
`

(PT M−1 + Q)A
´

.

Interpretation

DEF1, DEF2, R-BNN1, and R-BNN2 have identical spectra, and the same is true for
BNN, A-DEF1, and A-DEF2
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Theoretical comparison

Comparison

Theorem

Let the spectra of DEF1 and BNN be given by

σ(M−1PA) = {λ1, . . . , λn}, σ(PT M−1PA + QA) = {µ1, . . . , µn},

respectively. Then, the eigenvalues within these spectra can be ordered such that the
following statements hold:

λi = 0 and µi = 1, for i = 1, . . . , k;

λi = µi , for i = k + 1, . . . , n.
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Theoretical comparison

Comparison

Theorem

Suppose that the spectrum of DEF1, DEF2, R-BNN1, or R-BNN2 is

{0, . . . , 0, λk+1, . . . , λn}, with λk+1 ≤ λk+2 ≤ . . . ≤ λn

and the spectrum of BNN, A-DEF1, or A-DEF2 is

{1, . . . , 1, µk+1, . . . , µn}, with µk+1 ≤ µk+2 ≤ . . . ≤ µn.

Then, λi = µi for all i = k + 1, . . . , n.
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Theoretical comparison

Equivalent methods

Theorem

Let x̄ ∈ R
n be an arbitrary vector. The following methods produce exactly the same

iterates in exact arithmetic:

BNN with Vstart = Qb + PT x̄ ;

DEF2, A-DEF2, R-BNN1 and R-BNN2 (with Vstart = Qb + PT x̄);

DEF1 (with Vstart = x̄ ) whose iterates are based on Qb + PT xj+1.
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Numerical comparison

Porous media problem
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Numerical comparison

Bubbly flow problem
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Numerical comparison

Geometry of subdomains

Ω3

Ω2

Ω4

Ω1

Ω5

(a) Porous media problem.

Ω1 Ω2

Ω3 Ω4

(b) Bubbly flow problem.

Figure: Geometry of subdomains Ωj . Number of subdomains is fixed in the porous media problem,
whereas it can be varied in the bubbly flow problem.
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Numerical comparison

Standard parameters
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Figure: Relative errors in 2−norm during the iterative process, for the porous media problem with
n 552 , k 7 and ‘standard’ parameters.
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Numerical comparison

Approximate coarse solves
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Figure: Relative errors in 2−norm during the iterative process for the porous media problem with
n 552 k 7 and eE−1, where a perturbation 10−8 is taken.
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Numerical comparison

Severe termination criteria
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Figure: Relative 2−norm errors during the iterative process for the porous media problem with
n 552 k 7 and termination tolerance 10−16 .
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Numerical comparison

Perturbed starting vectors
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Conclusions

Conclusions

Conclusions

Various methods from deflation, additive coarse grid correction and balancing can
be written in one framework

DEF1, DEF2, R-BNN1, and R-BNN2 have identical spectra

BNN, A-DEF1, and A-DEF2 have identical spectra

Theoretically the methods are very close with respect to convergence

With respect to cost and robustness of implementation there are serious
differences

A-DEF2 seems to be the most robust and fastest method

Further reading

http://ta.twi.tudelft.nl/nw/users/vuik/pub it def.html

http://ta.twi.tudelft.nl/nw/users/vuik/papers/Tan07NVE.pdf
accepted for publication in Journal of Scientific Computing
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