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problem from the work floor: material analysis

Figure: EU project, SKIDSAFE: asphalt-tire interaction
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problem from the work floor: material analysis

20th century science

consider materials to be homogeneous
21th century science

shift from MACRO to MESO/MICRO scale

• Obtain CT scan from material specimen

• Convert CT scan to mesh

• Use finite element method for discretization of governing
equations
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problem from the work floor: material analysis

Figure: CT scan of asphalt column
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problem from the work floor: material analysis

Figure: from CT scan to mesh, approx. 3 mln DOF
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problem from the work floor: material analysis

governing equations

K∆u = ∆f (1)

Stiffness matrix K , change in displacement ∆u and change of force
∆f . The change of force involves evaluation of non-linear
equations that depend on displacement field.
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problem from the work floor: material analysis

properties of stiffness matrix K

• symmetric, positive definite: ∀∆u 6= 0, ∆uTK∆u > 0

• K ∈ Rn×n, n >> 106

• discontinuities in values matrix entries ∼ O
(
106

)
:

ill-conditioned
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Start of the project

2008

• 2D problems
• Direct solver
• Sequential
• Small grid size



Outline Introduction Iterative methods Numerical experiment: real asphalt core Conclusions Questions and references

End of the project

2012

• 3D problems
• Iterative solver
• Parallel 128 CPU’s
• Huge grid size
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End of the project

Tools

• Krylov solver

• Block IC or AMG preconditioner

• Grid partitioning (mesh based)

• Deflation Coarse grid and jumping coefficients

• Deflation for systems

• Deflation for multi-materials

• Automatic generation of Deflation vectors
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Existing solvers

just some possible methods and preconditioners

• preconditioned conjugate gradient method (PCG) combined with,

• BIM: Jacobi, SSOR

• Decomposition methods: (Additive-Schwarz) ILU(ε)

• direct solvers: MUMPS, PARDISO, SuperLU

• multigrid: geometric multigrid, algebraic multigrid (smoothed
aggregation)
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Existing solvers

bottom line: no free lunch
no black box solution for large, ill-conditioned systems

• performance of PCG depends on spectrum of K , large jumps
induce small eigenvalues, hence performance degrades when
number of jumps (different materials) increases

• direct solvers (may) become expensive for large meshes

• AMG can be insensitive to jumps, however to achieve this one has
to define the coarse grid specifically
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Use deflation

Deflation based operator is not a classical preconditioner, i.e. it is
not an approximation of K . The deflation operator is a projection
which, by the right choice of the projection vectors, removes
eigenvalues from the spectrum of the projected system.

definition
split displacement vector u,

u =
(
I − PT

)
u + PTu, (2)

and let us define the projection P by,

P = I − KZ (ZTKZ )−1ZT , Z ∈ Rn×m (3)
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the DPCG method

We use deflation based operator in conjunction with
preconditioning (e.g. diagonal scaling) to remove those small
eigenvalues that correspond to the jumps (discontinuities) in the
values of the stiffness matrix.

Deflated Preconditioned Conjugate Gradient (DPCG) method

Solve for M−1PK∆u = M−1P∆f
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How to choose the deflation vectors?

• We have observed in [2]1 that the rigid body modes of the regions
corresponding to the different materials coincide with the
eigenvectors of the ’jump’ eigenvalues.

• By removing those rigid body modes (RBM) using deflation, we
remove the corresponding ’jump’ eigenvalues from the system.

• The rigid body modes of sets of finite elements can be easily
computed.

1Jonsthovel et al., CMES, 2009
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How do RBM relate to stiffness matrix K?

The kernel of the element matrix of an arbitrary unconstrained
finite element is spanned by the rigid body modes of the element.
In 3D six rigid body modes: three translations, three rotations.
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How do RBM relate to stiffness matrix K?

Theorem
We assume a splitting K = C + R such that C and R are
symmetric positive semi-definite with N (C ) = span{Z} the null
space of C [1]2. Then

λi (C ) ≤ λi (PK ) ≤ λi (C ) + λmax(PR). (4)

Moreover, the effective condition number of PK is bounded by,

κeff(PK ) ≤ λn(K )

λm+1(C )
. (5)

2Vuik, Frank, SIAM, 2001
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation: construction of C
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How do RBM relate to stiffness matrix K?
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Figure: Principle of rigid body mode deflation: construction of R
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Recursive deflation

However, the definition of P given by first theorem does not
provide insight in the effect of individual deflation vectors on the
spectrum of PK . Introduce a recursive deflation operator which
can be used for more extensive eigenvalue analysis of PK .

Definition
P(k) = I − KZk(ZT

k KZk)−1ZT
k with Zk = [Z̃1, Z̃2, ..., Z̃k ], where

Z̃j ∈ Rn×lj and has rank lj .
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Recursive deflation

Theorem
Let P(k) and Zk as in Definition 2, then

P(k)K = PkPk−1 · · ·P1K

where Pi+1 = I − K̃i Z̃i+1(Z̃
T
i+1K̃i Z̃i+1)

−1Z̃T
i+1, K̃i = Pi K̃i−1,

K̃0 = K,

Z̃T
i K̃i−1Z̃

T
i and ZT

k KZk are non-singular because Z̃i are of full
rank and K is a symmetric positive definite matrix.
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Numerical experiment: real asphalt core

From playground to real engineering; consider mesh from
introduction. Size of system approx. 3 million DOF, material
parameters given in table below,

Table:

(a) E modulus materials

aggregate bitumen air voids

70000 5000 100
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Numerical experiment: real asphalt core

We compare PCG and DPCG combined with three different
preconditioners,

• diagonal scaling: low cost, weak properties

• AMG smoothed aggregation, default parameters, no specific
information on mesh provided: relative low set up and solve cost,
designed for solving elastic equations

• AMG smoothed aggregation, approx. null space of operator and
dof-to-node mapping provided: expensive set up and solve cost,
high memory usage



Outline Introduction Iterative methods Numerical experiment: real asphalt core Conclusions Questions and references

Numerical experiment: real asphalt core

Iteration count and CPU time.
All algorithms implemented in C++, Trilinos (SANDIA).

Preconditioners insensitive to domain decomposition.

4 domains 8 domains 64 domains
iter cpu (s) iter cpu (s) iter cpu (s)

PCG (diag) n.c. - n.c. - n.c. -
DPCG (diag) 9018 9883 9017 5456 9015 680
PCG (SA) 2018 6687 2016 6906 1942 1123
DPCG (SA) 1210 9450 1206 5043 1199 771
PCG (SA+) o.o.m. - 376 1118 379 455

SuperLU o.o.m - o.o.m - n.a. 3979
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Numerical experiment: real asphalt core
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Figure: numerical results: residuals
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Numerical experiment: real asphalt core
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Geomechanical application

Plaxis software
F.J. Lingen, P. Bonnier, R. Brinkgreve, and M.B. van Gijzen

• Industrial problem

• Good sequential solver available

• Multi-core

• Robust and black box

• Grid partitioning (matrix based)
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Typical application

A tunnel of which the walls have been modelled by shell elements,
on top of several soil layers with a varying stiffness.
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Typical application

Solver # threads Precon [s] Solve [s] # iter

Original 1 170 140 32

New

1 58 90 62
2 22 84 74
4 19 41 39
8 14 29 45
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Typical application
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Lessons learned

• Mechanical problems can be hard to solve

• Deflation helps for jumping coefficients and parallelization

• Be carefull by partitioning stiff objects

• Rigid body modes lead to good deflation vectors

• Interfaces are important

• Good speedups are achieved both on clusters and multi-core
machines
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Questions and references
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