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1. Introduction

The incompressible Navier Stokes equation

−ν∇2u + u.∇u + ∇p = f in Ω

∇.u = 0 in Ω.

u: fluid velocity; p: pressure
ν > 0 is the kinematic viscosity coefficient (1/Re).
Ω ⊂ R2 is a bounded domain with boundary conditions:

u = w on ∂ΩD, ν
∂u
∂n

− np = 0 on ∂ΩN .
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Finite element discretization

Discrete weak formulation

Xh ⊂ (H1
0 (Ω))d , Mh ⊂ L2(Ω)

Find uh ∈ Xh and ph ∈ Mh

ν

Z

Ω
∇uh : ∇vhdΩ +

Z

Ω
(uh.∇uh).vhdΩ −

Z

Ω
ph(∇.vh)dΩ =

Z

Ω
f.vhdΩ, ∀vh ∈ Xh,

Z

Ω
qh(∇.uh)dΩ = 0 ∀qh ∈ Mh.

Matrix notation
Au + N(u) + BT p = f

Bu = 0.
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Choice of elements

Brezzi-Babuska condition

inf
q∈Qh

sup
v∈Vh

(∇.vh, qh)

‖vh‖Vh
‖qh‖Qh

≥ γ ≥ 0.

Taylor Hood elements (Q2 − Q1), (P2 − P1) and (Q2 − Q1)
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Choice of elements

Brezzi-Babuska condition

inf
q∈Qh

sup
v∈Vh

(∇.vh, qh)

‖vh‖Vh
‖qh‖Qh

≥ γ ≥ 0.

Crouzeix Raviart (Q2 − P0), (P2+ − P1) and (P2+ − P1)
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Choice of elements

Brezzi-Babuska condition

inf
q∈Qh

sup
v∈Vh

(∇.vh, qh)

‖vh‖Vh
‖qh‖Qh

≥ γ ≥ 0.

Taylor Hood mini elements Q+
1 − Q1 and P+

1 − P1
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Software packages

IFISS

Incompressible Flow Iterative Solution Software

Silvester, Elman, Ramage, Wathen

Matlab, nice for experiments

academic, 2D problems only

modern block triangular preconditioners
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Software packages

Sepran

Sepran = Segal + Praagman

FORTRAN package, industrial and academic problems

1, 2, 3 Dimensional problems

Complex geometries

Taylor Hood and Raviart Thomas elements are
implemented
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Linearization

Stokes problem

− ν∆u + ∇p = f

∇.u = 0

Picard’s method

−ν∆u(k+1) + (u(k)
.∇)u(k+1) + ∇p(k+1) = f

∇.u(k+1) = 0

Newton’s method

ν∆uk+1 + uk+1
.∇uk + uk

.∇uk+1 + ∇pk+1 = f + uk
.∇uk

,

∇.uk+1 = 0.
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2. Solution techniques

Matrix form after linearization
[

F BT

B 0

] [

u
p

]

=

[

f
0

]

or Ax = b

F ∈ R
n×n, B ∈ R

m×n, f ∈ R
n and m ≤ n

Sparse linear system, symmetric (Stokes problem),
nonsymmetric (Navier Stokes) and always indefinite.

For unique solution u and p, finite elements must satisfy
BB condition.

Saddle point problem having large number of zeros on the
main diagonal
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Preconditioner for the Navier Stokes equations

Definition

A linear system Ax = b is transformed into P−1Ax = P−1b.
Eigenvalues of P−1A are more clustered than A

P ≈ A

Pz = r is cheap to solve for z

Block triangular preconditioners

»

F BT

B 0

–

=

»

I 0
BF−1 I

– »

F 0
0 S

– »

I F−1BT

0 I

–

=

»

I 0
BF−1 I

– »

F BT

0 S

–

P−1 =

»

F BT

0 S

–

−1

, S = −BF−1BT (Schur complement matrix)

Sz2 = r2, Fz1 = r1 − BT z2

GMRES converges in two iterations if exact arithmetic is used [Murphy, Golub,
Wathen -2000]

In practice F−1 and S−1 are expensive, so they are approximated
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Preconditioners for the Navier Stokes equations

Block triangular preconditioners

Pressure convection diffusion (PCD) [Kay, Login and Wathen,
2002]

S ≈ −ApF−1
p Qp

Least squares commutator (LSC) [Elman, Howle, Shadid, Silvester
and Tuminaro, 2002]

S ≈ −(BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT )

one of the best approximations available in the literature

Convergence independent of the mesh size and mildly dependent on Reynolds
number

Require extra operators

Require iterative solvers (Geometric multigrid, algebraic multigrid) for the (1,1)
and (2,2) blocks
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Preconditioners for the Navier Stokes equations

Augmented Lagrangian Approach (AL) [Benzi, Olshanski, 2007]

Adapted system
[

F + γBT W−1B BT

B 0

] [

u
p

]

=

[

f
0

]

Ŝ−1 = −(νQ̂−1
p + γW−1)

Q̂p approximation of the pressure mass matrix

W = Q̂p, γ Lagrange multiplier, ν viscosity

Convergence independent of the mesh size and mildly dependent on Reynolds
number

Require iterative solvers (Geometric multigrid, algebraic multigrid) for the
(1,1) block
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Preconditioners for the Navier Stokes equations

Incomplete LU preconditioners

A = LU − R, where R consist of dropped entries that are
absent in the index set S(i , j).
S = {(i , j)| aij 6= 0} [Classical ILU by Meijerink and van der Vorst, 1977].

In our case, S(i , j) = {(i , j)| i ,j are connected in the finite element grid}. So zeros in

the matrix, due to the coefficients are considered to be non-zero in the structure.

if ‖R‖ is large, give poor convergence (reordering)

Instability due to large ‖L−1‖ and ‖U−1‖
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Preconditioners for the Navier Stokes equations

ILUPACK

Bollhöfer and Saad

Static reordering schemes

Inverse-based ILU with diagonal pivoting

Multilevel framework

Iterative solver
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3. Advanced ILU preconditioner

Effect of reordering
In direct solver, reordering improves the profile and bandwidth of the matrix.

Improve the convergence of the ILU preconditioned Krylov subspace method

Minimizes dropped entries in ILU (‖A − L̄Ū‖F )

May give stable factorization (‖I −A(L̄Ū)−1‖F )

[Dutto-1993, Benzi-1997, Duff and Meurant-1989, Wille-2004, Chow and Saad - 1997]

Well-known renumbering schemes

Cuthill McKee renumbering (RCM) [Cuthill McKee - 1969]

Sloan renumbering [Sloan - 1986]

Minimum degree renumbering (MD) [Tinney and Walker - 1967]
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Preconditioners for the Navier Stokes equations

New renumbering scheme
Renumbering of grid points: Grid points are renumbered with Sloan or Cuthill
McKee algorithms

The unknowns are reordered by p-last or p-last per level methods

In p-last reordering, first all the velocity unknowns are ordered
followed by pressure unknowns. Usually, this produces a large
profile but avoids breakdown of the LU decomposition.

p-last per level reordering, smaller profile

p-last per element reordering, smallest profile
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Preconditioners for the Navier Stokes equations

p-last per level reordering

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Q2−Q1 finite element subdivision

First level 

Second level 

Third level 

Vuik, Rehman, and Segal Preconditioners for the Navier Stokes problem



Preconditioners for the Navier Stokes equations

Special features of Advanced ILU

lumping of positive off-diagonal elements

extra fill in (global, or pressure only)

ε stabilization parameter
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4. Numerical Experiments

Flow domains
Channel flow The Poiseuille channel flow in a square domain (−1, 1)2 with a
parabolic inflow boundary condition and the natural outflow condition having the
analytic solution: ux = 1 − y2; uy = 0; p = 2νx

Backward facing step

Q2-Q1 finite element discretization [Taylor, Hood - 1973]

Q2-P1 finite element discretization [Crouzeix, Raviart - 1973]
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Comparison of p-last and p-last per level

Square channel, Stokes, Q2-P1

16 32 64
0

50

100

150

200

250

gridsize

B
i−

C
G

S
T

A
B

 it
er

at
io

ns

p−last
p−last−level

16 32 64
0

1

2

3

4

5

6

7

8

gridsize

B
i−

C
G

S
T

A
B

 C
P

U
 ti

m
e

p−last
p−last−level

GMRES(20) costs more CPU time

GMRESR is comparable with Bi-CGSTAB, wrt CPU time
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Dependence on the Reynoldsnumber

Backward Facing Step, Navier Stokes, 16 × 48 with Q2-Q1
discretization
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Advanced ILU compared with PCD and LSC

Comparison of ILU preconditioner with block triangular preconditioners using GMRES
(accuracy = 10−4) and Newton linearization for the backward facing step Navier
Stokes problem, Q2-Q1 element

Direct solver for (1,1),(2,2) blocks of the block triangluar preconditioners

Re=100 PCD p-last-level(Sloan) LSC
- Iter sec Iter sec Iter sec

8x24 32 0.50 16 0.03 15 0.33
16x24 33 1.21 21 0.08 15 0.76
32x24 37 3.16 68 0.67 18 2.10
64x24 45 8.30 61 1.13 25 9.10

Re = 200
8x24 45 7.26 60 0.10 23 0.50

16x24 50 1.90 37 0.15 22 1.14
32x24 52 4.30 83 0.75 24 2.73
64x24 60 11.0 41 0.80 29 7.00
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Advanced ILU compared with AL and LSC

Comparison of ILU preconditioner with block triangular preconditioners using GCR(30)
and Newton linearization for the backward facing step Navier Stokes problem

Iterative solver for (1,1),(2,2) blocks of the block triangluar preconditioners

Q2-Q1 AL LSC p-last-level(Sloan)
- Iter sec Iter sec Iter sec

8x24 9 0.10 17 0.11 17 0.02
16x24 9 0.44 18 0.20 23 0.06
32x24 9 2.72 23 0.48 58 0.25
64x24 9 9.30 27 1.20 59 0.56

128x24 9 44.5 42 3.90 488 11.0

Q2-P1 AL LSC p-last-level(Sloan)
8x24 8 0.12 14 0.14 84 0.11
16x24 8 0.28 11 0.24 118 0.32
32x24 8 0.64 20 1.00 220 1.20
64x24 8 1.50 NC 308 3.50

128x24 8 3.43 NC NC
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ILUPACK

ILUPACK with GMRES(20)

Grid Iterations nnz(A) nnz(ILU) Growth factor
8x24 4 7040 15020 2.13

16x48 4 33122 96227 2.90
32x96 4 143548 797598 5.56
64x192 5 598832 3951127 6.60

Backward facing step, Stokes problem, Q2-Q1
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ILUPACK and Advanced ILU

ILUPACK with GMRES(20)

ILUPACK ILU p-last-level(Sloan)
Grid Iter. (time(s)) Total time(s) Iter. (time(s)) Total time(s))
8x24 4 (0.01) 0.04 14(0.008) 0.03

16x48 4(0.04) 0.23 20(0.012) 0.07
32x96 4 (0.19) 2.42 87(0.30) 0.41

64x192 5 (1.0) 21.00 276(3.35) 3.92

Backward facing step, Stokes problem, Q2-Q1
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5. Conclusions

IFISS is a nice tool to investigate the incompressible
Navier Stokes equations
Advanced ILU:

renumbering of grid points and reordering of unknowns
no break down and fast convergence
iterations increase with increase in Reynolds number and
grid points

Block preconditioners are better for large grid sizes and
large Reynolds numbers

ILUPACK needs small number of iterations, but memory
and CPU time can be large

Stretched grids?
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