A Parallel Linear Solver Exploiting the
Physical Properties of the Underlying
Mechanical Problem

Kees Vuik
Delft University of Technology
http://ta.twi.tudelft.nl/nw/users/vuik/

SIAM Conference on Computational Science and Engineering,
March 14-18, 2015, in Salt Lake City, Utah, USA

March 18, 2015



Contents:

1 Introduction
2 Requirements
3 Parallelisation strategy

4 Performance results

TU Delft | Dynaflow Research Group



Introduction



Introduction

Geomechanical problems are hard

Geomechanical problems typically involve large volumes of
soil/rock and various structural components.

Non-linear finite element models are used to compute the
deformation field.

Difficult to solve because large variations in stiffness and many
degrees of freedom.
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Introduction » geomechanical problems are hard
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Requirements



Requirements

The parallel iterative solver had to:
* be able to solve the same systems of equations as the
original iterative solver;
e have a similar performance on a single processor as the
original solver;
e achieve a significant parallel speedup on capable
machines for relatively large problems;
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Requirements

The parallel solver also had to:
e be a drop-in replacement of the original solver;
 hide all aspects concerning parallel computing from the
end users;
 and refrain from relying on (expensive) third-party software
components.
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Parallelisation strategy

Domain decomposition

Two methods to create the sub-domains and the corresponding
sub-domain matrices are:
e the traditional, element-based method;

e an alternative, node-based method.
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Parallelisation strategy » domain decomposition

Element-based method

Advantage: fits naturally in the traditional domain
decomposition framework.

Disadvantage: involves significant modifications in the
application implement the domain-wise assembly procedure.
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Parallelisation strategy » domain decomposition

Node-based method

Advantage: sub-domain matrices can be created directly from
the global stiffness matrix; no need to implement a modified
assembly procedure.

Linear constraints (tyings) are handled automatically because
they have already been taken into account during the assembly
of the global matrix.
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Parallelisation strategy » domain decomposition » node-based method

First step: partition the nodes without overlap.

Unique node partition = native nodes
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Parallelisation strategy » domain decomposition » node-based method

Second step: add overlap nodes.

native nodes
overlap nodes
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Parallelisation strategy

Preconditioner

Application of the preconditioner to a vector:
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Parallelisation strategy » preconditioner

Augmenting the preconditioning with a coarse grid
preconditioner (use the Rigid Body Modes of each sub-domain):
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Parallelisation strategy

First results are mixed

Good performance and speed up for uniform models.
Coarse grid perconditioner works well.
Worse performance than original solver for non-uniform models.

Reason: large variations in material stiffness within
sub-domains.
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Parallelisation strategy

Physics-based partitioning

Experiments indicated that the partitioning method is very
important.

Effective method: partition according material/element types.

Number of iterations reduced by factor four for a test case
comprising layers of soil, rock and concrete.

Difficulty: create a specified number of sub-domains and avoid
load imbalance.
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Parallelisation strategy » physics-based partitioning

Physics-based partitioning scheme:

1 create node groups based on material/element types;

2 create regions from connected nodes with the same group
number;

3 merge small regions;

4 partition remaining regions with Metis.
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Parallelisation strategy » physics-based partitioning

Create node groups based on material/element types

Create regions from connected nodes with the same group number
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Parallelisation strategy » physics-based partitioning

Merge small regions
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Parallelisation strategy » physics-based partitioning

Partition remaining regions with Metis (5 sub-domains)
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Parallelisation strategy » physics-based partitioning

The more sub-domains (threads) the better the result
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Performance results
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Performance results

Comparison with PARDISO

Model | Enin [MPa] | Emax [MPa] | # DOFs

1 1.5 3.0-10* | 680,000
2 1.5 3.0-10* | 414,000
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Performance results » comparison with pardiso

Model 1
Solver # threads | Precon [s] | Solve [s] | # iter
PARDISO 8 200 150 1
Original 1 320 680 140
1 140 550 134
New 2 82 180 80
4 43 150 111
8 23 100 113
Model 2
Solver # threads | Precon [s] | Solve [s] | # iter
PARDISO 8 71 72 1
Original 1 170 140 32
1 58 90 62
New 2 22 84 74
4 19 41 39
8 14 29 45
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Conclusions



Conclusions

New solver is effective for models with large variations in
material stiffness.

Physics-based partitioning scheme is important to obtain good
convergence rate.

Rigid body modes result in an effective coarse grid
preconditioner.

Good speedup obtained on standard workstation.
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