A Parallel Linear Solver Exploiting the Physical Properties of the Underlying Mechanical Problem

> Kees Vuik Delft University of Technology http://ta.twi.tudelft.nl/nw/users/vuik/

SIAM Conference on Computational Science and Engineering, March 14-18, 2015, in Salt Lake City, Utah, USA

March 18, 2015

Contents:

- 1 Introduction
- 2 Requirements
- 3 Parallelisation strategy
- 4 Performance results

Introduction

Geomechanical problems are hard

- Geomechanical problems typically involve large volumes of soil/rock and various structural components.
- Non-linear finite element models are used to compute the deformation field.
- Difficult to solve because large variations in stiffness and many degrees of freedom.

Requirements

The parallel iterative solver had to:

- be able to solve the same systems of equations as the original iterative solver;
- have a similar performance on a single processor as the original solver;
- achieve a significant parallel speedup on *capable* machines for relatively large problems;

The parallel solver also had to:

- be a drop-in replacement of the original solver;
- hide all aspects concerning parallel computing from the end users;
- and refrain from relying on (expensive) third-party software components.

Parallelisation strategy

Domain decomposition

Two methods to create the sub-domains and the corresponding sub-domain matrices are:

- the traditional, element-based method;
- an alternative, node-based method.

Element-based method

Advantage: fits naturally in the traditional domain decomposition framework.

Disadvantage: involves significant modifications in the application implement the domain-wise assembly procedure.

Node-based method

Advantage: sub-domain matrices can be created directly from the global stiffness matrix; no need to implement a modified assembly procedure.

Linear constraints (*tyings*) are handled automatically because they have already been taken into account during the assembly of the global matrix.

First step: partition the nodes without overlap.

Unique node partition = native nodes

Second step: add overlap nodes.

Preconditioner

Application of the preconditioner to a vector:

Augmenting the preconditioning with a coarse grid preconditioner (use the Rigid Body Modes of each sub-domain):

First results are mixed

Good performance and speed up for uniform models.

Coarse grid perconditioner works well.

- Worse performance than original solver for non-uniform models.
- Reason: large variations in material stiffness within sub-domains.

Physics-based partitioning

- Experiments indicated that the partitioning method is very important.
- Effective method: partition according material/element types.
 - Number of iterations reduced by factor four for a test case comprising layers of soil, rock and concrete.
- Difficulty: create a specified number of sub-domains and avoid load imbalance.

- Physics-based partitioning scheme:
 - 1 create *node groups* based on material/element types;
 - 2 create *regions* from connected nodes with the same group number;
 - 3 merge small regions;
 - 4 partition remaining regions with Metis.

- Create *node groups* based on material/element types
- Create *regions* from connected nodes with the same group number

Merge small regions

Partition remaining regions with Metis (5 sub-domains)

The more sub-domains (threads) the better the result

p 1

p 2

Performance results

Comparison with PARDISO

Model	Emin [MPa]	Emax [MPa]	# DOFs
1	1.5	$3.0\cdot10^4$	680,000
2	1.5	$3.0 \cdot 10^{4}$	414,000

Solver	# threads	Precon [s]	Solve [s]	# iter			
PARDISO	8	200	150	1			
Original	1	320	680	140			
New	1	140	550	134			
	2	82	180	80			
	4	43	150	111			
	8	23	100	113			

Model 1

Model 2

Solver	# threads	Precon [s]	Solve [s]	# iter
PARDISO	8	71	72	1
Original	1	170	140	32
New	1	58	90	62
	2	22	84	74
	4	19	41	39
	8	14	29	45

Conclusions

- New solver is effective for models with large variations in material stiffness.
- Physics-based partitioning scheme is important to obtain good convergence rate.
- Rigid body modes result in an effective coarse grid preconditioner.
- Good speedup obtained on standard workstation.

 Read the full paper.
F.J. Lingen and P.G. Bonnier and R.B.J. Brinkgreve and M.B. van Gijzen and C. Vuik
A parallel linear solver exploiting the physical properties of the underlying mechanical problem
Computational Geosciences, 18, pp. 913-926, 2014
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Lin14BBGV.pdf

Contact the authors:

- Kees Vuik (c.vuik@tudelft.nl)
- Erik Jan Lingen (erikjan.lingen@dynaflow.com)