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Introduction



Introduction

Geomechanical problems are hard

I Geomechanical problems typically involve large volumes of
soil/rock and various structural components.

I Non-linear finite element models are used to compute the
deformation field.

I Difficult to solve because large variations in stiffness and many
degrees of freedom.
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Introduction I geomechanical problems are hard
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Requirements



Requirements

The parallel iterative solver had to:
• be able to solve the same systems of equations as the

original iterative solver;
• have a similar performance on a single processor as the

original solver;
• achieve a significant parallel speedup on capable

machines for relatively large problems;
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Requirements

The parallel solver also had to:
• be a drop-in replacement of the original solver;
• hide all aspects concerning parallel computing from the

end users;
• and refrain from relying on (expensive) third-party software

components.
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Parallelisation strategy

Domain decomposition

Two methods to create the sub-domains and the corresponding
sub-domain matrices are:
• the traditional, element-based method;
• an alternative, node-based method.
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Parallelisation strategy I domain decomposition

Element-based method

Advantage: fits naturally in the traditional domain
decomposition framework.

Disadvantage: involves significant modifications in the
application implement the domain-wise assembly procedure.
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Parallelisation strategy I domain decomposition

Node-based method

Advantage: sub-domain matrices can be created directly from
the global stiffness matrix; no need to implement a modified
assembly procedure.

Linear constraints (tyings) are handled automatically because
they have already been taken into account during the assembly
of the global matrix.
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Parallelisation strategy I domain decomposition I node-based method

First step: partition the nodes without overlap.

Mesh

Unique node partition = native nodes
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Parallelisation strategy I domain decomposition I node-based method

Second step: add overlap nodes.
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Parallelisation strategy

Preconditioner

Application of the preconditioner to a vector:
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Parallelisation strategy I preconditioner

Augmenting the preconditioning with a coarse grid
preconditioner (use the Rigid Body Modes of each sub-domain):
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Parallelisation strategy

First results are mixed
I Good performance and speed up for uniform models.

Coarse grid perconditioner works well.

I Worse performance than original solver for non-uniform models.

I Reason: large variations in material stiffness within
sub-domains.
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Parallelisation strategy

Physics-based partitioning

I Experiments indicated that the partitioning method is very
important.

I Effective method: partition according material/element types.

Number of iterations reduced by factor four for a test case
comprising layers of soil, rock and concrete.

I Difficulty: create a specified number of sub-domains and avoid
load imbalance.
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Parallelisation strategy I physics-based partitioning

I Physics-based partitioning scheme:

1 create node groups based on material/element types;

2 create regions from connected nodes with the same group
number;

3 merge small regions;

4 partition remaining regions with Metis.
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Parallelisation strategy I physics-based partitioning

I Create node groups based on material/element types

I Create regions from connected nodes with the same group number
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Parallelisation strategy I physics-based partitioning

Merge small regions
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Parallelisation strategy I physics-based partitioning

Partition remaining regions with Metis (5 sub-domains)
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Parallelisation strategy I physics-based partitioning

The more sub-domains (threads) the better the result
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Performance results
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Performance results

Comparison with PARDISO

Model Emin [MPa] Emax [MPa] # DOFs

1 1.5 3.0 · 104 680,000
2 1.5 3.0 · 104 414,000

Model 1 Model 2
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Performance results I comparison with pardiso

Model 1
Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 200 150 1
Original 1 320 680 140

New

1 140 550 134
2 82 180 80
4 43 150 111
8 23 100 113

Model 2
Solver # threads Precon [s] Solve [s] # iter

PARDISO 8 71 72 1
Original 1 170 140 32

New

1 58 90 62
2 22 84 74
4 19 41 39
8 14 29 45
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Conclusions

I New solver is effective for models with large variations in
material stiffness.

I Physics-based partitioning scheme is important to obtain good
convergence rate.

I Rigid body modes result in an effective coarse grid
preconditioner.

I Good speedup obtained on standard workstation.
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I Read the full paper.
F.J. Lingen and P.G. Bonnier and R.B.J. Brinkgreve and M.B. van
Gijzen and C. Vuik
A parallel linear solver exploiting the physical properties of the
underlying mechanical problem
Computational Geosciences, 18, pp. 913-926, 2014
http://ta.twi.tudelft.nl/nw/users/vuik/papers/Lin14BBGV.pdf
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