Deflation acceleration of the PCG method applied to porous media flow

Kees Vuik

Delft University of Technology

Delft Institute of Applied Mathematics

SIAM Conference on Mathematical and Computational Issues in the Geosciences

Domain-based and Krylov-based Deflation Methods for Flow in Porous Media

March 20, 2007, Santa Fé, New Mexico

Contents

- 1. Introduction
- 2. IC preconditioned CG
- 3. Deflated ICCG
- 4. Physical deflation vectors
- 5. Conclusions

1. Introduction

Motivation

Knowledge of the fluid pressure in rock layers is important for an oil company to predict the presence of oil and gas in reservoirs.

The earth's crust has a layered structure

Computation of fluid pressure $-\operatorname{div}(\sigma \nabla p(x)) = 0$ on Ω , p fluid pressure, σ permeability

Delft University of Technology

TUDelft

Ax = b

A is sparse and SPD Condition number of A is $O(10^7)$, due to large contrast in permeability

Applications

- reservoir simulations
- porous media flow
- electrical power networks
- semiconductors
- magnetic field simulations
- fictitious domain methods

TUDelft

2. IC preconditioned CG

Error estimate

$$Ax = b$$

$$M^{-1}Ax = M^{-1}b$$

$$x - x_k = (M^{-1}A)^{-1}M^{-1}A(x - x_k)$$

$$\|x - x_k\|_2 \le \frac{1}{\lambda_{\min}} \|M^{-1}r_k\|_2$$

 λ_{min} : smallest eigenvalue of $M^{-1}A$

TUDelft

Test problem

Configuration with 7 straight layers

Delft University of Technology

TUDelft

Convergence CG

Convergence behavior of CG without preconditioning

Convergence CG

Convergence behavior of CG without preconditioning

Convergence ICCG

Convergence behavior of ICCG

L is the Incomplete Cholesky factor of A

 k^s is the number of high-permeability domains not connected to a Dirichlet boundary

D is a diagonal matrix $(d_{ii} > 0)$ and $\hat{A} = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$

<u>Theorem 1</u> (scaling invariance) $L^{-1}AL^{-T}$ and $\hat{L}^{-1}\hat{A}\hat{L}^{-T}$ are identical.

Proof:

$$\hat{L} = D^{-\frac{1}{2}}L \text{ and } \hat{L}^{-1}\hat{A}\hat{L}^{-T} = L^{-1}D^{\frac{1}{2}}(D^{-\frac{1}{2}}AD^{-\frac{1}{2}})D^{\frac{1}{2}}L^{-T} = L^{-1}AL^{-T}$$

TUDelft

Spectrum of IC preconditioned matrix

Take D = diag(A)

Theorem 2

 \hat{A} has k^s eigenvalues of $O(\varepsilon)$, where ε is the ratio between high and low permeability.

Theorem 3

The ic preconditioned matrix $L^{-1}AL^{-T}$ has k^s eigenvalues of $O(\varepsilon)$.

Proof: Scaling invariance (Theorem 1) implies

spectrum
$$(L^{-1}AL^{-T}) = \operatorname{spectrum}(\hat{L}^{-1}\hat{A}\hat{L}^{-T})$$

In [Vuik, Segal, Meijerink, Wijma, 2001] we have shown that the number and size of small eigenvalues of \hat{A} and $\hat{L}^{-1}\hat{A}\hat{L}^{-T}$ are the same. The theorem is proven by using Theorem 2.

Delft University of Technology

 \square

Idea: remove the bad eigenvectors from the error/residual.

Krylov	Ar
Preconditioned Krylov	$M^{-1}Ar$
Block Preconditioned Krylov	$\sum_{i=1}^{m} (M_i^{-1}) Ar$
Block Preconditioned Deflated Krylov	$\sum_{i=1}^{m} (M_i^{-1}) PAr$

Idea: remove the bad eigenvectors from the error/residual.

Various choices are possible:

- Projection vectors Physical vectors, eigenvectors, coarse grid projection vectors (constant, linear, ...)
- Projection method Deflation, coarse grid projection, balancing, augmented, FETI
- Implementation sparseness, with(out) using projection properties, optimized, ...

Literature

Deflated CG (start)

Nicolaides 1987, Mansfield 1990

Deflated CG (start)

Nicolaides 1987, Mansfield 1990

Deflated CG (further development)

Graham and Hagger 1997, 1999, Kolotilina 1998, Vuik, Segal and Meijerink 1999, Saad, Yeung, Erhel and Guyomarc'h 2000, Frank and Vuik 2001, Aksoylu, Rodriguez, Klie and Wheeler 2006, Nabben and Vuik 2004, 2006, Scheichl and Graham, 2006

Deflated CG (start)

Nicolaides 1987, Mansfield 1990

Deflated CG (further development)

Graham and Hagger 1997, 1999, Kolotilina 1998, Vuik, Segal and Meijerink 1999, Saad, Yeung, Erhel and Guyomarc'h 2000, Frank and Vuik 2001, Aksoylu, Rodriguez, Klie and Wheeler 2006, Nabben and Vuik 2004, 2006, Scheichl and Graham, 2006

Deflation and restarted GMRES

Morgan 1995, Erhel, Burrage and Pohl 1996, Chapman and Saad 1997, Morgan 2002, Giraud and Gratton 2005, Kilmer and De Sturler 2006

A is SPD, Conjugate Gradients

 $P = I - AZE^{-1}Z^T$ with $E = Z^T AZ$

and $Z = [z_1...z_m]$, where $z_1, ..., z_m$ are independent deflation vectors.

Properties

- 1. $P^T Z = 0$ and P A Z = 0
- **2.** $P^2 = P$
- $3. \quad AP^T = PA$

TUDelft

$$x = (I - P^T)x + P^T x$$

 $(I - P^T)x = ZE^{-1}Z^TAx = ZE^{-1}Z^Tb, \qquad AP^Tx = PAx = Pb$

Delft University of Technology

Kees Vuik, March 20, 2007 16 - p.16/29

$$x = (I - P^T)x + P^T x$$

 $(I - P^T)x = ZE^{-1}Z^TAx = ZE^{-1}Z^Tb, \qquad AP^Tx = PAx = Pb$

DICCG

$$k = 0, \ \hat{r}_0 = \mathbf{P}r_0, \ p_1 = z_1 = L^{-T}L^{-1}\hat{r}_0;$$

while
$$\|\hat{r}_{k}\|_{2} > \varepsilon$$
 do
 $k = k + 1;$
 $\alpha_{k} = \frac{(\hat{r}_{k-1}, z_{k-1})}{(p_{k}, PAp_{k})};$
 $x_{k} = x_{k-1} + \alpha_{k}p_{k};$
 $\hat{r}_{k} = \hat{r}_{k-1} - \alpha_{k}PAp_{k};$
 $z_{k} = L^{-T}L^{-1}\hat{r}_{k};$
 $\beta_{k} = \frac{(\hat{r}_{k}, z_{k})}{(\hat{r}_{k-1}, z_{k-1})};$ $p_{k+1} = z_{k} + \beta_{k}p_{k};$

end while

Convergence and termination criterion

Choose z_1 , z_2 , z_3 eigenvectors of $L^{-T}L^{-1}A$

Convergence

$$\|P^{T}x - P^{T}x_{k}\|_{2} \le 2\sqrt{K}\|P^{T}x - P^{T}x_{0}\|_{2} \left(\frac{\sqrt{K}-1}{\sqrt{K}+1}\right)^{k}$$

where $K = \frac{\lambda_n}{\lambda_4}$

Termination criterion

$$\|L^{-T}L^{-1}Pb - L^{-T}L^{-1}PAx_k\|_2 \le \frac{\delta}{\lambda_4} \text{ implies } \|P^Tx - P^Tx_k\|_2 \le \delta$$

″uDelft

Choose eigenvectors of $L^{-T}L^{-1}A$. Properties of cross sections:

- a constant value in sandstone layers
- in shale layers their graph is linear

TUDelft

Eigenvectors of $L^{-T}L^{-1}A$

TUDelft

\boldsymbol{k} is number of subdomains

 $\Omega_i, i = 1, ..., k^s$ high-permeability subdomains without a Dirichlet B.C.; $i = k^s + 1, ..., k^h$ remaining high-permeability subdomains

- define z_i for $i \in \{1, ..., k^s\}$
- $z_i = 1$ on $\overline{\Omega}_i$ and $z_i = 0$ on $\overline{\Omega}_j, j \neq i, j \in \{1, ..., k^h\}$
- z_i satisfies equation:

 $-\operatorname{div}(\sigma_j \nabla z_i) = 0 \text{ on } \Omega_j, j \in \{k^h + 1, ..., k\},\$

with appropriate boundary conditions

Sparse vectors, subproblems are cheap to solve

Example with $k_s = 2, k_h = 3$, and k = 5

 $\delta \Omega_N$

TUDelft

Physical deflation vectors

Theorem 4

The deflation vectors are such that for D = diag(A)

- $||D^{-1}Az_i||_{\infty} = O(\varepsilon)$
- $\|L^{-T}L^{-1}Az_i\|_2 = O(\varepsilon)$

Define $Z = [z_1...z_{k^s}]$ and $U = [u_1...u_{k^s}]$, where u_i are 'small' eigenvectors.

Theorem 5

There is a matrix X such that Z = UX + E, with $||E||_2 = O(\sqrt{\varepsilon})$

• Random vector added in shale layers (amplitude $\alpha/2$)

α	0	10^{-1}	1	ICCG
λ_{per}	0.164	0.164	$8.2 \cdot 10^{-3}$	$1.6 \cdot 10^{-9}$
iter	14	15	24	54

• Random vector added to the nonzero parts

α	0	10^{-3}	10^{-1}	ICCG
λ_{per}	0.164	$9 \cdot 10^{-4}$	$9 \cdot 10^{-8}$	$1.6 \cdot 10^{-9}$
iter	14	27	56	54

After perturbation the smallest eigenvalues remain exactly zero, however, the smallest non-zero eigenvalue can change considerably.

TUDelft

Geometry oil flow problem

Results oil flow problem

Varying σ_{shale}

σ	ICCG		DICCG	
	$^{\lambda}$ min	iter	λ min	iter
10^{-3}	$1.5 \cdot 10^{-2}$	26	$6.9 \cdot 10^{-2}$	20
10^{-5}	$2.2 \cdot 10^{-4}$	59	$7.7 \cdot 10^{-2}$	20
10^{-7}	$2.3 \cdot 10^{-6}$	82	$7.7 \cdot 10^{-2}$	20

Varying accuracy

accuracy	ICCG		DICCG	
	iter	CPU	iter	CPU
10^{-5}	82	18.9	20	6.3
10^{-3}	78	18.0	12	4.1
10^{-1}	75	17.2	2	1.2

TUDelft

The pressure in groundwater satisfies the equation:

$$-\nabla \cdot (A\nabla u) = F,\tag{1}$$

where the coefficients and geometry of the problem are:

TUDelft

The low permeable layer ($A = 10^{-5}$) and the jump in permeabilities between the two sand sections lead to a 'small' eigenvalue.

TUDelft

5. Conclusions

- DICCG is a robust and efficient method to solve diffusion problems with discontinuous coefficients.
- The choice of the projection vectors is important for the success of a projection method.
- For layered problems the physical deflation vectors are the optimal choice for the projection vectors.
- For many problems a second level preconditioner (Deflation) saves a lot of CPU time.

- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- C. Vuik, A. Segal and J.A. Meijerink An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients J. Comp. Phys., 152, pp. 385-403, 1999.
- J. Frank and C. Vuik On the construction of deflation-based preconditioners SIAM Journal on Scientific Computing, 23, pp. 442–462, 2001
- R. Nabben and C. Vuik A comparison of Deflation and Coarse Grid Correction applied to porous media flow SIAM J. on Numerical Analysis, 42, pp. 1631-1647, 2004
- R. Nabben and C. Vuik A comparison of Deflation and the Balancing preconditioner
 SIAM Journal on Scientific Computing, 27, pp. 1742-1759, 2006