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1. Introduction

Motivation
Knowledge of the fluid pressure in rock layers is important for an oil
company to predict the presence of oil and gas in reservoirs.

The earth’s crust has a layered structure
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Mathematical model

Computation of fluid pressure −div(σ∇p(x)) = 0 on Ω, p fluid pressure,
σ permeability
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Properties and Applications

Ax = b

A is sparse and SPD
Condition number of A is O(107), due to large contrast in permeability

Applications
- reservoir simulations
- porous media flow
- electrical power networks
- semiconductors
- magnetic field simulations

- fictitious domain methods
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2. IC preconditioned CG

Error estimate
Ax = b

M−1Ax = M−1b

x − xk = (M−1A)−1M−1A(x − xk)

‖x − xk‖2 ≤ 1
λmin

‖M−1rk‖2

λmin: smallest eigenvalue of M−1A
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Test problem
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Convergence CG

0 5 10 15 20 25 30 35 40
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

estimate

||r
k
||

2

λ
min

number of iterations

Convergence behavior of CG without preconditioning

Kees Vuik, March 20, 2007 8 – p.8/29



Delft University of Technology

Convergence CG
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Convergence ICCG
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Spectrum of IC preconditioned matrix

L is the Incomplete Cholesky factor of A

ks is the number of high-permeability domains not connected to a
Dirichlet boundary

D is a diagonal matrix (dii > 0) and Â = D−
1

2 AD−
1

2

Theorem 1 (scaling invariance)
L−1AL−T and L̂−1ÂL̂−T are identical.

Proof:

L̂ = D−
1

2 L and L̂−1ÂL̂−T = L−1D
1

2 (D−
1

2 AD−
1

2 )D
1

2 L−T = L−1AL−T .
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Spectrum of IC preconditioned matrix

Take D =diag(A)

Theorem 2
Â has ks eigenvalues of O(ε), where ε is the ratio between high and
low permeability.

Theorem 3
The IC preconditioned matrix L−1AL−T has ks eigenvalues of O(ε).

Proof: Scaling invariance (Theorem 1) implies

spectrum(L−1AL−T ) = spectrum(L̂−1ÂL̂−T )

In [Vuik, Segal, Meijerink, Wijma, 2001] we have shown that the
number and size of small eigenvalues of Â and L̂−1ÂL̂−T are the
same. The theorem is proven by using Theorem 2. �
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3. Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M−1Ar

Block Preconditioned Krylov
m
∑

i=1

(M−1
i )Ar

Block Preconditioned Deflated Krylov
m
∑

i=1

(M−1
i )PAr
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3. Deflated ICCG

Idea: remove the bad eigenvectors from the error/residual.

Various choices are possible:

• Projection vectors
Physical vectors, eigenvectors, coarse grid projection vectors
(constant, linear, ...)

• Projection method
Deflation, coarse grid projection, balancing, augmented, FETI

• Implementation
sparseness, with(out) using projection properties, optimized, ...
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Deflated ICCG

A is SPD, Conjugate Gradients

P = I − AZE−1ZT with E = ZT AZ

and Z = [z1...zm], where z1, ..., zm are independent deflation vectors.

Properties

1. P T Z = 0 and PAZ = 0

2. P 2 = P

3. AP T = PA
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Deflated ICCG

x = (I − PT )x + PT x

(I − PT )x = ZE−1ZT Ax = ZE−1ZT b, AP T x = PAx = Pb

DICCG
k = 0, r̂0 = Pr0, p1 = z1 = L−T L−1r̂0;

while ‖r̂k‖2 > ε do
k = k + 1;
αk = (r̂k−1,zk−1)

(pk,PApk) ;
xk = xk−1 + αkpk;
r̂k = r̂k−1 − αkPApk;
zk = L−T L−1r̂k;
βk = (r̂k,zk)

(r̂k−1,zk−1) ; pk+1 = zk + βkpk;

end while
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Convergence and termination criterion

Choose z1 , z2 , z3 eigenvectors of L−T L−1A

Convergence

‖PT x − PT xk‖2 ≤ 2
√

K‖P T x − PT x0‖2

(√
K − 1√
K + 1

)k

where K = λn

λ4

Termination criterion

‖L−T L−1Pb − L−T L−1PAxk‖2 ≤ δ

λ4
implies ‖P T x − PT xk‖2 ≤ δ

‘
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Deflation vectors

Choose eigenvectors of L−T L−1A. Properties of cross sections:
• a constant value in sandstone layers
• in shale layers their graph is linear
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Eigenvectors of L
−T

L
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A
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4. Physical deflation vectors

k is number of subdomains

Ωi, i = 1, ..., ks high-permeability subdomains without a Dirichlet B.C.;
i = ks + 1, ..., kh remaining high-permeability subdomains

• define zi for i ∈ {1, ..., ks}
• zi = 1 on Ω̄i and zi = 0 on Ω̄j , j 6= i, j ∈ {1, ..., kh}
• zi satisfies equation:

−div(σj∇zi) = 0 on Ωj , j ∈ {kh + 1, ..., k},

with appropriate boundary conditions

Sparse vectors, subproblems are cheap to solve
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Physical deflation vectors

Example with ks = 2, kh = 3, and k = 5
The geometry
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δ Ω
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The first projection vector The second projection vector
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Physical deflation vectors

Example with ks = 2, kh = 3, and k = 5
The first projection vector The second projection vector
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Properties

Theorem 4
The deflation vectors are such that for D = diag(A)

• ‖D−1Azi‖∞ = O(ε)

• ‖L−T L−1Azi‖2 = O(ε)

Define Z = [z1...zks ] and U = [u1...uks ], where ui are ’small’
eigenvectors.

Theorem 5

There is a matrix X such that Z = UX + E, with ‖E‖2 = O(
√

ε)

Kees Vuik, March 20, 2007 22 – p.22/29



Delft University of Technology

Sensitivity of deflation vectors

• Random vector added in shale layers (amplitude α/2)

α 0 10−1 1 ICCG

λper 0.164 0.164 8.2 · 10−3 1.6 · 10−9

iter 14 15 24 54

• Random vector added to the nonzero parts

α 0 10−3 10−1 ICCG

λper 0.164 9 · 10−4 9 · 10−8 1.6 · 10−9

iter 14 27 56 54

After perturbation the smallest eigenvalues remain exactly zero,
however, the smallest non-zero eigenvalue can change considerably.
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Geometry oil flow problem
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Results oil flow problem

Varying σshale

σ ICCG DICCG

λmin iter λmin iter

10−3 1.5 · 10−2 26 6.9 · 10−2 20
10−5 2.2 · 10−4 59 7.7 · 10−2 20
10−7 2.3 · 10−6 82 7.7 · 10−2 20

Varying accuracy

accuracy ICCG DICCG

iter CPU iter CPU

10−5 82 18.9 20 6.3
10−3 78 18.0 12 4.1
10−1 75 17.2 2 1.2
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A groundwater flow problem

The pressure in groundwater satisfies the equation:

−∇ · (A∇u) = F, (1)

where the coefficients and geometry of the problem are:
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A groundwater flow problem

The low permeable layer (A = 10−5) and the jump in permeabilities
between the two sand sections lead to a ’small’ eigenvalue.
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5. Conclusions

• DICCG is a robust and efficient method to solve diffusion
problems with discontinuous coefficients.

• The choice of the projection vectors is important for the success
of a projection method.

• For layered problems the physical deflation vectors are the
optimal choice for the projection vectors.

• For many problems a second level preconditioner (Deflation)
saves a lot of CPU time.
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