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1. Large Jumps

Model Problem

—V(KVu) = f

Dirichlet
BCs
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 Test case taken from [Vuik et-al-1999]
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-ﬁ' Properties and Applications

Ax=Db
A is sparse and SPD
Condition number of A is large, due to large contrast in permeability
Applications
* Reservoir simulations

e Porous media flow

e Fictitious domain methods
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J -g“ Convergence of CG
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J ,gg‘ Convergence of CG
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J ,gg‘ Convergence of CG
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Deflated ICCG

ldea: remove the bad eigenvectors from the error/residual.

Krylov Ar

Preconditioned Krylov M~tAr

Block Preconditioned Krylov ST (M;HAr
1=1

m

Block Preconditioned Deflated Krylov > (Mf_‘l)PA-r

=1
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-ﬁ“' DICCG
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S D, e —T7-T7r—-12 .
.10 =PFPro, pr =z1=L"" L "ro;

while ||74|2 > < do
k=Fk+1;

 (TPr—1.2k—1).
Ok = (pr,PApr) °

Tk = Th—1 + Pk,
T = Thr_1 — oL PApy;

By = Uz
Pk (Th_1,2k_1)"

Pra1 = 2k + OrDk;

end while
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-gﬂ' Geometry oil flow problem
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Results oll flow problem

Varying oghale
a ICCG DICCG
’\min iter )‘min iter
1072 | 1.5-1072 | 26 || 6.9-1072 | 20
107° 1 22.100% | 59 || 7.7-1072 | 20
1077 123.107% |82 || 7.7-107% | 20
Varying accuracy
accuraoy ICCG DICCG

iter | CPU || iter | CPU
10=> | 82 | 189 || 20 | 6.3
1072 | 78 | 18.0 || 12 | 4.1
10t | 75 | 17.2 2 1.2
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A groundwater flow problem

The pressure in groundwater satisfies the equation:

<

—V - (AVu) = F.

where the coefficients and geometry of the problem are:

= F:]U[}x\‘
Xﬂ&“\ .
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ﬁé‘i A groundwater flow problem

The low permeable layer (A = 10~°) and the jump in permeabilities
between the two sand sections lead to a 'small’ eigenvalue.
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-gj*' 2. Large grids (PhD, Paulien van Slingerland)
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DG Methods
DG methods are like FVM, but then based on piecewise polynomials

FVM = DG with p=0 DG with p=1

Solution
Solution

Domain: 5 mesh elements Domain: 5 mesh elements

DG for elliptic problems: [Arnold et al., 2002], [Riviere, 2008]
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-ﬁ Coarse corrections
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The main idea is to speed up CG using coarse corrections based on p =0

prolongation restriction

Original idea of spectral multigrid: [Renquist and Patera, 1987]
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-ﬁ*f Deflation variant
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We can switch to deflation by simply skipping a smoothing step

The result z of applying two-level deflation to a vector r:

zW .= oM, apply smoother M~
z® .=z Q(r— Az(), apply coarse correction Q

z:= 2% L oM 1r— AZ(9), W

Requirement: M + M —wATs SPD M is SPD
assuming we pre-process the CG start vector once:

Xo— Qb+ (1—AQ)  xo.

The result is equivalent to a CG method with an SPD preconditioner: [Tang et al., 2009]
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Layered problem

degree p=2 p=3
mesh | N=20° N=40° N=80%2 N=1602 | N=20° N=402 N=80? N=1602
size A| 2400 9600 38400 153600 | 4000 16000 64000 256000
Jacobi | 975 1264 1567 2314 1295 1490 1921 3110
block Jacobi (BJ) | 243 424 788 1285 244 425 697 1485
two-level prec., 2x BJ 46 43 43 44 55 56 56 57
two-level defl., 1x BJ 43 45 45 46 A7 48 48 48

CG stopping criterion: ”—Dfﬂ—ﬂ% <106

Diagonal-scaling is applied beforehand
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-gj" Groundwater flow
‘ onal

degree p=2 p=3
mesh | N=202 N=402 N=802 N=1602 | N=202 N=40° N=802 N=1607
two-level prec. (v =1) 53 54 52 52 63 67 68 68
two-level prec. (w =0.7) 36 38 38 38 39 41 42 42
two-level defl. (w0 =1) 52 54 54 54 58 59 59 60
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3. Large computers (GPU)

Variational Boussinesg model (VBM) as
proposed by Gert Klopman

Linearized VBM equations:

9,
8‘_§ + V- (CU+ hVyp —hDVy) =0,
do
RV — _P,
5 + U -V + gC

M+ V- (WDVp —NV1) = 0.
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3. Large computers (GPU, MSc, Martijn de Jong)

e Equidistant rectangle grid (not mandatory)
 Finite volume method (FVM) for space
« Leapfrog method for time integration

After discretization:

SL_’ = b.

dq

— 2 — Lq+f.
a e

Solve them consecutively in real-time
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3. Large computers (GPU)

Matrix .S is given by a 5-point stencil:

0 — g—; *_’GN 0
—BUNW AT + RUNT + AzAyMe + RENG + RN —RUN
AT W &.y N AT E Yy C ‘;_\y S Ar W Axr E
- AT AT

Matrix S is:

¢ real-valued, sparse (5-point, pentadiagonal)
¢ diagonally dominant (not very strong for small mesh sizes)
* symmetric positive definite (SPD)

® quite large (in the order of millions by millions)
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The RRB-solver

The RRB-solver:

« is a PCG-type solver (preconditioned
conjugated gradients)

e Uses as preconditioner: the RRB-method

RRB stands for “Repeated Red-Black”.

The RRB-method determines an incomplete
factorization:

S=LDIL'+ R — M=LDL'~S
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The RRB-solver

As the name RRB reveals: multiple leve

Therefore the RRB-solver has good scali

behaviour (Multigrid)

Method of choice because:

ing

 shown to be robust for all of MARIN'’s test

problems

* solved all test problems up to 1.5 million

nodes within 7 iterations(!)
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An 8 x 8 example of the RRB-numbering process
29| 30| 31| 32 [] (] [] 64

45 25 46 26 47 27 48 28

21 22/ 23] 24 E@

41 17 42 18 43 19 44 20

13014015016 B R E B 63| 61

37 9 38 1039 11 40 12

TN D DED@D

33 1 34 2 35 3 36 4

(1) @) (3) (4)

29 55 30 62 31 56 32 64
A5 25 46 26 A7 27 48 28
21 59 22 53 23 60 24 54

- . 41 17 42 18 43 19 44 20
All levels combined: | e 566
37 9 38 10 39 11 40 12
5 57 6 49 7 58 8 50
33 1 34 2 35 3 36 4
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-ﬁ Special ordering
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Sparsity pattern of matrix S versus L + D + L'

(recall preconditioner M = LDLT)
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In the blue shaded areas fill-in has been dropped (lumping)
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-gf' CUDA implementation
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Besides the typical Multigrid issues such as idle cores on the coarsest
levels, in CUDA the main problem was getting “coalesced memory
transfers”.

Why is that?

Recall the RRB-numbering: the number of nodes becomes 4 x smaller
on every next level:

TNENENEN E N E N N &
45 25 46 26 47 27 48 28
2122 23] 24 59| 60|
4117 42 1843 19 44 20
13714 157 16 ] [ ] 63| 61
37 9 (38 10/39 11 40 12
5 106 [0 7 [0 s mE B
33 134 235 3 36 4
(2) (3) (4)
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CUDA implementation

e Data is read from and written to the device’s
global memory via 32-, 64- of 128-byte
memory transfers

« Example: reading data with a stride

64 byte . 64 byte . 64 byte

= T

odata

|
|
idata

odata

64 byte 64 byte 64 byte
| |

idata

odata
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CUDA implementation

New storage scheme: ry/ry /b1 /by

Nodes are divided in four groups:

Next level

T2

bo

™1 b

bo T2 by T2
™1 b1 T1 by
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-gf' CUDA implementation

The rl/r2/b1l/b2-storage scheme

* is applied on every next coarser level till the point that the remaining level is smaller
than 32 X 32 elements; the last levels are solved in one go on 1 streaming
multiprocessor (SM) exploiting the benefits of cache

» almost comes for free (only at the beginning and ending of CG we have some overhead
due to reordering of the data)

» allows for coalesced memory read and write operations throughout the entire CG
algorithm which yields optimal throughput
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Kernel throughput up to 250 GB/s (thanks to cache)

» Solver speed up is up to 30 x for realistic problems of 1.5 million nodes and up to 40 X
for even larger problems (> 2048 X 2048 nodes)

» Time needed? Merely 10 milliseconds for 7 CG-iterations (vs. 300 ms for C++)
» The fast CUDA solver allows real-time simulation

* Also the RRB-preconditioner can be constructed in real-time and hence varying
bathymetry across time is supported
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Eﬂg‘ Summary
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» Building blocks for fast and robust solvers for pressure systems on the GPU are given

» Deflation can reduce the condition number, number of iterations, and CPU time
considerably

* High accuracy DG methods can greatly reduce the grid size
» Deflation type solvers lead to scalable solvers for DG problems
 RRB solver leads to scalable convergence for Poisson type problems

» Clever reordering leads to speed up of a factor 40 on the GPU
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