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1. Problem: The Helmholtz equation

The Helmholtz equation without damping

−∆u(x, y)− k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,

k(x, y) is the wave number,

g(x, y) is the point source function and

Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)
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Problem description

• Second order Finite Difference stencil:
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• Linear system Ahuh = gh: properties

Sparse & complex valued

Symmetric & Indefinite for large k

• For high resolution a very fine grid is required: 30− 60 gridpoints

per wavelength (or ≈ 5− 10× k) → Ah is extremely large!

• Traditionally solved by a Krylov subspace method, which exploits

the sparsity.
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2. Shifted Laplace Preconditioner

Laplace operator Bayliss and Turkel, 1983

Definite Helmholtz Laird, 2000

Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner

M ≡ −∆− (β1 − iβ2)k
2, β1, β2 ∈ R.

If β1 ≤ 0 holds than M is a (semi) definite operator.

→ β1, β2 = 0 : Bayliss and Turkel

→ β1 = 1, β2 = 0 : Laird

→ β1 = −1, β2 = 0.5 : Y.A. Erlangga, C. Vuik and C.W. Oosterlee



May 2, 2013 8

Delft Institute of Applied Mathematics

Numerical results for a wedge problem

k2 10 20 40 50 100

grid 322 642 1282 1922 3842

No-Prec 201(0.56) 1028(12) 5170(316) – –

ILU(A,0) 55(0.36) 348(9) 1484(131) 2344(498) –

ILU(A,1) 26(0.14) 126(4) 577(62) 894(207) –

ILU(M ,0) 57(0.29) 213(8) 1289(122) 2072(451) –

ILU(M ,1) 28(0.28) 116(4) 443(48) 763(191) 2021(1875)

MG(V(1,1)) 13(0.21) 38(3) 94(28) 115(82) 252(850)
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Shifted Laplace Preconditioner Spectrum

• Eigenvalues of the preconditioned operator are bounded by 1

• Small eigenvalues move to zero, as k increases.

Spectrum of M−1A, where (β1, β2) = (1, 0.5)

k = 30 k = 120
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3. Second Level Preconditioners

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Erlangga and Nabben, 2008, seems to be independent of k.

with / without deflation.
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Deflation: or two-grid method

Deflation, a projection preconditioner

P = I −AQ, with Q = ZE−1ZT and E = ZTAZ

where,

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rank(Z) = r ≤ n

Along with a traditional preconditioner M , deflated preconditioned

system reads

PM−1Au = PM−1g.

Deflation vectors shifted the eigenvalues to zero.
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Spectrum as function of k
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Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as

deflation matrix, i.e. Z = I2hh and ZT = Ih2h then

Ph = Ih −AhQh, with Qh = I2hh A−1
2h I

h
2h and A2h = Ih2hAhI

2h
h

where

Ph can be interpreted as a coarse grid correction and

Qh as the coarse grid operator
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Deflation: ADEF1

Deflation can be implemented combined with SLP Mh,

M−1
h PhAhuh = M−1

h Phgh

Ahuh = gh is preconditioned by two-level preconditoner M−1
h Ph.

For large problems, A2h is too large to invert exactly.

Inversion of A2h is sensitive, since Ph deflates the spectrum to zero.

To do is: Solve A2h iteratively to required accuracy on certain levels,

and shift the deflated spectrum to λmax
h by adding a shift in two level

preconditioner. This leads to the ADEF1 preconditioner

P(h,ADEF1) = M−1
h Ph + λmax

h Qh
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Deflation: MLKM

Multi Level Krylov Method a, take Âh = M−1
h Ah, and define P̂h by

using Âh (instead of Ah) will be

P̂h = Ih − ÂhQ̂h,

where

Q̂h = I2hh Â−1
2h I

h
2h and Â2h = Ih2hÂhI

2h
h = Ih2h(M

−1
h Ah)I

2h
h

Construction of coarse matrix A2h at level 2h costs inversion of preconditioner at level h.

Approximate A2h

Ideal Practical

A2h = Ih2h(M
−1
h Ah)I

2h
h A2h = Ih2h(M

−1
h Ah)I

2h
h

A2h ≈ Ih2hI
2h
h M−1

2h A2h

aErlangga, Y.A and Nabben R., ETNA 2008
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4. Fourier Analysis

Dirichlet boundary conditions for analysis.

With above deflation,

spec(PM−1A) = f(β1, β2, k, h)

is a complex valued function.

Setting kh = 0.625,

• Spectrum of PM−1A with shifts (1, 0.5) is clustered around 1 with

a few outliers.

• Spectrum remains almost the same, when the imaginary shift for

the preconditioner is varied from 0.5 to 1.
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Fourier Analysis

ADEF1: Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM b,

k = 160 and 20 gp/wl

Ideal Practical
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5. Numerical results

•
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Numerical results
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Numerical results

Number of GMRES outer-iterations in multilevel algorithm.

(β1, β2) = (1, 0.5) kh = .3125 or 20 gp/wl

and SLP approximated by multigrid Vcyle V(1,1)

Grid k = 10 k = 20 k = 40 k = 80 k = 160

ADEF1-V(4,2,1) 9 11 16 27 100+

ADEF1-V(6,2,1) 9 10 14 21 47

ADEF1-V(8,2,1) 9 10 13 20 38

ADEF1-V(8,3,2) 9 10 13 19 37

ADEF1-V(8,2,1), a multilevel solver where 8 and 2 Krylv iterations performed on 2nd and

3rd levels and 1 iteration on further levels and Vcycle approximates SLP.
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Results

Petsc solve-time in Seconds; a Two-level solver.

Solver 20 40 80 120 160 200

SLP 0.01(23) 0.24(54) 2.62(113) 11.60(168) 33.59(222) 83.67(274)

ADEF1/SLP 0.03(10) 0.14(14) 0.82(23) 2.92(37) 8.98(61) 23.13(87)

SLP : GCR preconditioned with SLP M(1, 1).

Def/SLP: Deflated and preconditioned GCR.

Grid resolution is such that there are 10 grid points per wavelength.
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Numerical results
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Numerical results

3D Helmholtz on unit cube with Sommerfeld b.c. on all faces.

Wavenumber k

Solver Type 5 10 15 20 30 40 60 80

SL Prec. 11 15 21 29 47 74 118 185

ADEF1-F(8,2,1) 9 10 11 11 13 16 22 28

ADEF1-V(8,2,1) 11 15 21 28 44 67 101 153

SL Prec. : Only shifted Laplace preconditioner

ADEF1-F : Multilevel solver , Fcycle for slp.

ADEF1-V : Multilevel solver , Vcycle for slp.
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Numerical results

Multilevel solver is coded in Petsc.

3D Helmholtz on unit cube with constant wavenumber.
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Conclusions

• Without deflation, when imaginary shift is increased in SLP,

spectrum remains bounded above 1, but lower part moves to zero.

• With deflation the convergence is nearly independent of the

imaginary shift.

• With deflation the convergence is initially weakly depending on k.

For large k is scales again linearly.

• With deflation the CPU time is less than without deflation.

• The convergence of ADEF1 and the practical variant of MLKM are

similar.



May 2, 2013 27

Delft Institute of Applied Mathematics

References

• Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based

Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27,

pp. 1471-1492, 2006

• M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete

Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp.

2007.

• Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz

equation preconditioned by shifted Laplacian. ETNA, 2008.

• H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz

Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of

Computational and Applied Mathematics, 236, pp. 281-293, 2011

• A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace

preconditioner combined with multi-grid deflation. NLAA 2013

http://onlinelibrary.wiley.com/doi/10.1002/nla.1882/abstract

• http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html


	Application: geophysical survey
	Application: geophysical survey
	Contents
	1. Problem: The Helmholtz equation
	Problem description
	2. Shifted Laplace Preconditioner
	Numerical results for a wedge problem
	Shifted Laplace Preconditioner Spectrum
	3. Second Level Preconditioners
	Deflation: or two-grid method
	Spectrum as function of k
	Deflation for Helmholtz
	Deflation: ADEF1
	Deflation: MLKM
	4. Fourier Analysis
	Fourier Analysis
	Fourier Analysis
	5. Numerical results
	Numerical results
	Numerical results
	Results
	Numerical results
	Numerical results
	Numerical results
	Conclusions
	References

