Deflation type methods combined with shifted Laplace preconditioners for the Helmholtz equation

Weizmann Workshop 2013 on Multilevel Computational Methods and Optimization, April 30 - May 2 2013, at the Weizmann Institute of Science, Rehovot, Israel

Kees Vuik, Abdul Sheikh and Domenico Lahaye
May 2, 2013

Application: geophysical survey

hard Marmousi Model

Application: geophysical survey

hard Marmousi Model

Contents

1. Problem
2. Shifted Laplace preconditioner
3. Second-level preconditioning
4. Fourier Analysis
5. Results
6. Conclusions

1. Problem: The Helmholtz equation

The Helmholtz equation without damping

$$
-\Delta \mathbf{u}(x, y)-k^{2}(x, y) \mathbf{u}(x, y)=\mathbf{g}(x, y) \text { in } \Omega
$$

$\mathbf{u}(x, y)$ is the pressure field, $\mathbf{k}(x, y)$ is the wave number, $\mathrm{g}(x, y)$ is the point source function and
Ω is the domain. Absorbing boundary conditions are used on Γ.

$$
\frac{\partial \mathbf{u}}{\partial n}-\iota \mathbf{u}=0
$$

n is the unit normal vector pointing outwards on the boundary.
Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

Problem description

- Second order Finite Difference stencil:

$$
\left[\begin{array}{ccc}
& -1 & \\
-1 & 4-k^{2} h^{2} & -1 \\
& -1 &
\end{array}\right]
$$

- Linear system $A_{h} u_{h}=g_{h}$: properties

Sparse \& complex valued
Symmetric \& Indefinite for large k

- For high resolution a very fine grid is required: $30-60$ gridpoints per wavelength (or $\approx 5-10 \times k$) $\rightarrow A_{h}$ is extremely large!
- Traditionally solved by a Krylov subspace method, which exploits the sparsity.

2. Shifted Laplace Preconditioner

Laplace operator Bayliss and Turkel, 1983
Definite Helmholtz Laird, 2000
Shifted Laplace Y.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003
Shifted Laplace preconditioner

$$
M \equiv-\Delta-\left(\beta_{1}-\mathbf{i} \beta_{2}\right) k^{2}, \quad \beta_{1}, \beta_{2} \in \mathbb{R}
$$

If $\beta_{1} \leq 0$ holds than M is a (semi) definite operator.
$\rightarrow \beta_{1}, \beta_{2}=0 \quad: \quad$ Bayliss and Turkel
$\rightarrow \beta_{1}=1, \beta_{2}=0 \quad: \quad$ Laird
$\rightarrow \beta_{1}=-1, \beta_{2}=0.5 \quad$: Y.A. Erlangga, C. Vuik and C.W. Oosterlee

Numerical results for a wedge problem

k_{2}	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	$201(0.56)$	$1028(12)$	$5170(316)$	-	-
ILU $(A, 0)$	$55(0.36)$	$348(9)$	$1484(131)$	$2344(498)$	-
ILU $(A, 1)$	$26(0.14)$	$126(4)$	$577(62)$	$894(207)$	-
ILU $(M, 0)$	$57(0.29)$	$213(8)$	$1289(122)$	$2072(451)$	-
ILU $(M, 1)$	$28(0.28)$	$116(4)$	$443(48)$	$763(191)$	$2021(1875)$
MG(V(1,1))	$13(0.21)$	$38(3)$	$94(28)$	$115(82)$	$252(850)$

Shifted Laplace Preconditioner Spectrum

- Eigenvalues of the preconditioned operator are bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1} A$, where $\left(\beta_{1}, \beta_{2}\right)=(1,0.5)$

$$
k=30 \quad k=120
$$

3. Second Level Preconditioners

Number of GMRES iterations. Shifts in the preconditioner are $(1,0.5)$

Grid	$k=10$	$k=20$	$k=30$	$k=40$	$k=50$	$k=100$
$n=32$	$5 / 10$	$8 / 17$	$14 / 28$	$26 / 44$	$42 / 70$	$13 / 14$
$n=64$	$4 / 10$	$6 / 17$	$8 / 28$	$12 / 36$	$18 / 45$	$173 / 163$
$n=96$	$3 / 10$	$5 / 17$	$7 / 27$	$9 / 35$	$12 / 43$	$36 / 97$
$n=128$	$3 / 10$	$4 / 17$	$6 / 27$	$7 / 35$	$9 / 43$	$36 / 85$
$n=160$	$3 / 10$	$4 / 17$	$5 / 27$	$6 / 35$	$8 / 43$	$25 / 82$
$n=320$	$3 / 10$	$4 / 17$	$4 / 27$	$5 / 35$	$5 / 42$	$10 / 80$

Erlangga and Nabben, 2008, seems to be independent of k.
with / without deflation.

Deflation: or two-grid method

Deflation, a projection preconditioner

$$
P=I-A Q, \quad \text { with } \quad Q=Z E^{-1} Z^{T} \text { and } E=Z^{T} A Z
$$

where,
$Z \in R^{n \times r}$, with deflation vectors $Z=\left[z_{1}, \ldots, z_{r}\right], \operatorname{rank}(Z)=r \leq n$
Along with a traditional preconditioner M, deflated preconditioned system reads

$$
P M^{-1} A u=P M^{-1} g .
$$

Deflation vectors shifted the eigenvalues to zero.

Spectrum as function of k

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z=I_{h}^{2 h}$ and $Z^{T}=I_{2 h}^{h}$ then

$$
P_{h}=I_{h}-A_{h} Q_{h}, \quad \text { with } \quad Q_{h}=I_{h}^{2 h} A_{2 h}^{-1} I_{2 h}^{h} \quad \text { and } A_{2 h}=I_{2 h}^{h} A_{h} I_{h}^{2 h}
$$

where
P_{h} can be interpreted as a coarse grid correction and
Q_{h} as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_{h},

$$
M_{h}^{-1} P_{h} A_{h} u_{h}=M_{h}^{-1} P_{h} g_{h}
$$

$A_{h} u_{h}=g_{h}$ is preconditioned by two-level preconditoner $M_{h}^{-1} P_{h}$.
For large problems, $A_{2 h}$ is too large to invert exactly. Inversion of $A_{2 h}$ is sensitive, since P_{h} deflates the spectrum to zero.

To do is: Solve $A_{2 h}$ iteratively to required accuracy on certain levels, and shift the deflated spectrum to $\lambda_{h}^{\max }$ by adding a shift in two level preconditioner. This leads to the ADEF1 preconditioner

$$
P_{(h, A D E F 1)}=M_{h}^{-1} P_{h}+\lambda_{h}^{\max } Q_{h}
$$

Deflation: MLKM

Multi Level Krylov Method a, take $\hat{A}_{h}=M_{h}^{-1} A_{h}$, and define \hat{P}_{h} by using \hat{A}_{h} (instead of A_{h}) will be

$$
\hat{P}_{h}=I_{h}-\hat{A}_{h} \hat{Q}_{h},
$$

where

$$
\hat{Q}_{h}=I_{h}^{2 h} \hat{A}_{2 h}^{-1} I_{2 h}^{h} \text { and } \hat{A}_{2 h}=I_{2 h}^{h} \hat{A}_{h} I_{h}^{2 h}=I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h}
$$

Construction of coarse matrix $A_{2 h}$ at level $2 h$ costs inversion of preconditioner at level h. Approximate $A_{2 h}$

Ideal

$$
A_{2 h}=I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h}
$$

Practical

$$
\begin{aligned}
A_{2 h} & =I_{2 h}^{h}\left(M_{h}^{-1} A_{h}\right) I_{h}^{2 h} \\
A_{2 h} & \approx I_{2 h}^{h} I_{h}^{2 h} M_{2 h}^{-1} A_{2 h}
\end{aligned}
$$

4. Fourier Analysis

Dirichlet boundary conditions for analysis.
With above deflation,

$$
\mathbf{\operatorname { s p e c }}\left(P M^{-1} A\right)=f\left(\beta_{1}, \beta_{2}, k, h\right)
$$

is a complex valued function.
Setting $k h=0.625$,

- Spectrum of $P M^{-1} A$ with shifts $(1,0.5)$ is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1 .

Fourier Analysis

ADEF1: Analysis shows spectrum clustered around 1 with few outliers.

$$
k=30
$$

$k=120$

Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM ${ }^{\oplus}$,
$k=160$ and $20 \mathrm{gp} / \mathrm{wl}$

Ideal

Practical

5. Numerical results

Number of GMRES iterations for the 1D Helmholtz equation

$$
10 \leq k \leq 800
$$

Numerical results

Number of GMRES iterations for the 1D Helmholtz equation

$$
1000 \leq k \leq 20000
$$

Numerical results

Number of GMRES outer-iterations in multilevel algorithm.
$\left(\beta_{1}, \beta_{2}\right)=(1,0.5) k h=.3125$ or $20 \mathrm{gp} / \mathrm{wl}$ and SLP approximated by multigrid Vcyle $\mathrm{V}(1,1)$

Grid	$k=10$	$k=20$	$k=40$	$k=80$	$k=160$
ADEF1-V(4,2,1)	9	11	16	27	$100+$
ADEF1-V(6,2,1)	9	10	14	21	47
ADEF1-V(8,2,1)	9	10	13	20	38
ADEF1-V(8,3,2)	9	10	13	19	37

ADEF1-V(8,2,1), a multilevel solver where 8 and 2 Krylv iterations performed on $2^{\text {nd }}$ and $3^{\text {rd }}$ levels and 1 iteration on further levels and Vcycle approximates SLP.

Results

Petsc solve-time in Seconds; a Two-level solver.

Solver	20	40	80	120	160	200
SLP	$0.01(23)$	$0.24(54)$	$2.62(113)$	$11.60(168)$	$33.59(222)$	$83.67(274)$
ADEF1/SLP	$0.03(10)$	$0.14(14)$	$0.82(23)$	$2.92(37)$	$8.98(61)$	$23.13(87)$

SLP : GCR preconditioned with SLP $M(1,1)$.
Def/SLP: Deflated and preconditioned GCR.
Grid resolution is such that there are 10 grid points per wavelength.

Numerical results

Comparison of number of iterations by ADEF1 and MLKM.

Numerical results

3D Helmholtz on unit cube with Sommerfeld b.c. on all faces.

	Wavenumber k							
Solver Type	5	10	15	20	30	40	60	80
SL Prec.	11	15	21	29	47	74	118	185
ADEF1-F(8,2,1)	9	10	11	11	13	16	22	28
ADEF1-V(8,2,1)	11	15	21	28	44	67	101	153

SL Prec. : Only shifted Laplace preconditioner
ADEF1-F : Multilevel solver , Fcycle for slp.

ADEF1-V : Multilevel solver, Vcycle for slp.

Numerical results

Multilevel solver is coded in Petsc.
3D Helmholtz on unit cube with constant wavenumber.

ADEF1 solve time and Setup time.

Conclusions

- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k. For large k is scales again linearly.
- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
- M.B. van Giizen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. NLAA 2013 http://onlinelibrary.wiley.com/doi/10.1002/nla.1882/abstract
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

