Deflation type methods combined with shifted Laplace preconditioners for the Helmholtz equation

Weizmann Workshop 2013 on Multilevel Computational Methods and Optimization, April 30 - May 2 2013, at the Weizmann Institute of

Science, Rehovot, Israel

Kees Vuik, Abdul Sheikh and Domenico Lahaye

May 2, 2013

TUDelft

Delft University of Technology

1

Application: geophysical survey

hard Marmousi Model

TUDelft

2

Application: geophysical survey

hard Marmousi Model

3

Delft Institute of Applied Mathematics

May 2, 2013

Contents

- 1. Problem
- 2. Shifted Laplace preconditioner
- 3. Second-level preconditioning
- 4. Fourier Analysis
- 5. Results
- 6. Conclusions

1. Problem: The Helmholtz equation

The Helmholtz equation without damping

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$

 $\mathbf{u}(x,y)$ is the pressure field,

 $\mathbf{k}(x,y)$ is the wave number,

 $\mathbf{g}(x, y)$ is the point source function and

 Ω is the domain. Absorbing boundary conditions are used on $\Gamma.$

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is the unit normal vector pointing outwards on the boundary.

Perfectly Matched Layer (PML) and Absorbing Boundary Layer (ABL)

May 2, 2013

Delft Institute of Applied Mathematics

Problem description

• Second order Finite Difference stencil:

$$\begin{array}{ccc}
-1 \\
-1 & 4 - k^2 h^2 & -1 \\
-1 & -1
\end{array}$$

- Linear system $A_h u_h = g_h$: properties Sparse & complex valued Symmetric & Indefinite for large k
- For high resolution a very fine grid is required: 30 60 gridpoints per wavelength (or ≈ 5 - 10 × k) → A_h is extremely large!
- Traditionally solved by a Krylov subspace method, which exploits the sparsity.

May 2, 2013

2. Shifted Laplace Preconditioner

Laplace operatorBayliss and Turkel, 1983Definite HelmholtzLaird, 2000Shifted LaplaceY.A. Erlangga, C. Vuik and C.W.Oosterlee, 2003

Shifted Laplace preconditioner

$$M \equiv -\Delta - (\beta_1 - \mathbf{i}\beta_2)k^2, \ \beta_1, \beta_2 \in \mathbb{R}.$$

If $\beta_1 \leq 0$ holds than M is a (semi) definite operator.

- $\rightarrow \beta_1, \beta_2 = 0$: Bayliss and Turkel
- $\rightarrow \beta_1 = 1, \beta_2 = 0$: Laird
- $\rightarrow \beta_1 = -1, \beta_2 = 0.5$: Y.A. Erlangga, C. Vuik and C.W. Oosterlee

May 2, 2013

Delft Institute of Applied Mathematics

Numerical results for a wedge problem

k_2	10	20	40	50	100
grid	32^{2}	64^{2}	128^{2}	192^{2}	384^{2}
No-Prec	201(0.56)	1028(12)	5170(316)	—	—
ILU(A, 0)	55(0.36)	348(9)	1484(131)	2344(498)	—
ILU(A, 1)	26(0.14)	126(4)	577(62)	894(207)	—
ILU(M, 0)	57(0.29)	213(8)	1289(122)	2072(451)	—
ILU(M, 1)	28(0.28)	116(4)	443(48)	763(191)	2021(1875)
MG(V(1,1))	13(0.21)	38(3)	94(28)	115(82)	252(850)

Shifted Laplace Preconditioner Spectrum

- Eigenvalues of the preconditioned operator are bounded by 1
- Small eigenvalues move to zero, as k increases.

Spectrum of $M^{-1}A$, where $(\beta_1, \beta_2) = (1, 0.5)$ k = 30 k = 120

9

May 2, 2013

3. Second Level Preconditioners

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid	k = 10	k = 20	k = 30	k = 40	k = 50	k = 100
n = 32	5/10	8/17	14/28	26/44	42/70	13/14
n = 64	4/10	6/17	8/28	12/36	18/45	173/163
n = 96	3/10	5/17	7/27	9/35	12/43	36/97
n = 128	3/10	4/17	6/27	7/35	9/43	36/85
n = 160	3/10	4/17	5/27	6/35	8/43	25/82
n = 320	3/10	4/17	4/27	5/35	5/42	10/80

Erlangga and Nabben, 2008, seems to be independent of k.

with / without deflation.

May 2, 2013

Delft Institute of Applied Mathematics

Deflation: or two-grid method

Deflation, a projection preconditioner

P = I - AQ, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

where,

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, $rank(Z) = r \le n$

Along with a traditional preconditioner M, deflated preconditioned system reads

 $PM^{-1}Au = PM^{-1}g.$

Deflation vectors shifted the eigenvalues to zero.

11

May 2, 2013

Spectrum as function of k

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z = I_h^{2h}$ and $Z^T = I_{2h}^h$ then

 $P_h = I_h - A_h Q_h$, with $Q_h = I_h^{2h} A_{2h}^{-1} I_{2h}^h$ and $A_{2h} = I_{2h}^h A_h I_h^{2h}$

where

- P_h can be interpreted as a coarse grid correction and
- Q_h as the coarse grid operator

Deflation: ADEF1

Deflation can be implemented combined with SLP M_h ,

 $M_h^{-1}P_hA_hu_h = M_h^{-1}P_hg_h$

 $A_h u_h = g_h$ is preconditioned by two-level preconditoner $M_h^{-1} P_h$.

For large problems, A_{2h} is too large to invert exactly. Inversion of A_{2h} is sensitive, since P_h deflates the spectrum to zero.

To do is: Solve A_{2h} iteratively to required accuracy on certain levels, and shift the deflated spectrum to λ_h^{max} by adding a shift in two level preconditioner. This leads to the **ADEF1** preconditioner

 $P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^{max} Q_h$

May 2, 2013

Deflation: MLKM

Multi Level Krylov Method^{*a*}, take $\hat{A}_h = M_h^{-1} A_h$, and define \hat{P}_h by using \hat{A}_h (instead of A_h) will be

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_h^{2h} \hat{A}_{2h}^{-1} I_{2h}^h$$
 and $\hat{A}_{2h} = I_{2h}^h \hat{A}_h I_h^{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$

Construction of coarse matrix A_{2h} at level 2h costs inversion of preconditioner at level h.

Approximate A_{2h}

IdealPractical $A_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$ $A_{2h} = I_{2h}^h (M_h^{-1} A_h) I_h^{2h}$ $A_{2h} \approx I_{2h}^h I_h^{2h} M_{2h}^{-1} A_{2h}$

May 2⁹, Embangga, Y.A and Nabben R., ETNA 2008

Delft Institute of Applied Mathematics

4. Fourier Analysis

Dirichlet boundary conditions for analysis. With above deflation,

 $\operatorname{spec}(PM^{-1}A) = f(\beta_1, \beta_2, k, h)$

is a complex valued function.

Setting kh = 0.625,

May 2, 2013

- Spectrum of $PM^{-1}A$ with shifts (1, 0.5) is clustered around 1 with a few outliers.
- Spectrum remains almost the same, when the imaginary shift for the preconditioner is varied from 0.5 to 1.

Fourier Analysis

<u>ADEF1:</u> Analysis shows spectrum clustered around 1 with few outliers.

k = 30 k = 120

May 2, 2013

Fourier Analysis

Spectrum of Helmholtz preconditioned by <u>MLKM</u> b , k = 160 and 20 gp/wl Ideal Practical

^bTwo-level

May 2, 2013

TUDelft

18

Number of GMRES iterations for the 1D Helmholtz equation $10 \le k \le 800$

19

May 2, 2013

Number of GMRES iterations for the 1D Helmholtz equation $1000 \le k \le 20000$

TUDelft

20

May 2, 2013

Number of GMRES outer-iterations in multilevel algorithm. $(\beta_1, \beta_2) = (1, 0.5) \ kh = .3125 \text{ or } 20 \text{ gp/wl}$ and SLP approximated by multigrid Vcyle V(1,1)

Grid	k = 10	k = 20	k = 40	k = 80	k = 160
ADEF1-V(4,2,1)	9	11	16	27	100+
ADEF1-V(6,2,1)	9	10	14	21	47
ADEF1-V(8,2,1)	9	10	13	20	38
ADEF1-V(8,3,2)	9	10	13	19	37

ADEF1-V(8,2,1), a multilevel solver where 8 and 2 Krylv iterations performed on 2^{nd} and

 3^{rd} levels and 1 iteration on further levels and Vcycle approximates SLP.

Results

Petsc solve-time in Seconds; a Two-level solver.

Solver	20	40	80	120	160	200	
SLP	0.01(23)	0.24(54)	2.62(113)	11.60(168)	33.59(222)	83.67(274)	
ADEF1/SLP	0.03(10)	0.14(14)	0.82(23)	2.92(37)	8.98(61)	23.13(87)	

SLP : GCR preconditioned with SLP M(1,1). Def/SLP: Deflated and preconditioned GCR.

Grid resolution is such that there are 10 grid points per wavelength.

22

Comparison of number of iterations by ADEF1 and MLKM.

23

Delft Institute of Applied Mathematics

May 2, 2013

3D Helmholtz on unit cube with Sommerfeld b.c. on all faces.

	Wavenumber k							
Solver Type	5	10	15	20	30	40	60	80
SL Prec.	11	15	21	29	47	74	118	185
ADEF1-F(8,2,1)	9	10	11	11	13	16	22	28
ADEF1-V(8,2,1)	11	15	21	28	44	67	101	153

SL Prec. : Only shifted Laplace preconditioner

ADEF1-F : Multilevel solver , Fcycle for slp.

ADEF1-V : Multilevel solver, Vcycle for slp.

May 2, 2013

Delft Institute of Applied Mathematics

Multilevel solver is coded in Petsc.

3D Helmholtz on unit cube with constant wavenumber.

ADEF1 solve time and Setup time.

25

May 2, 2013

Conclusions

- Without deflation, when imaginary shift is increased in SLP, spectrum remains bounded above 1, but lower part moves to zero.
- With deflation the convergence is nearly independent of the imaginary shift.
- With deflation the convergence is initially weakly depending on k.
 For large k is scales again linearly.
- With deflation the CPU time is less than without deflation.
- The convergence of ADEF1 and the practical variant of MLKM are similar.

References

- Y.A. Erlangga and C.W. Oosterlee and C. Vuik A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- H. Knibbe and C.W. Oosterlee and C. Vuik GPU implementation of a Helmholtz Krylov solver preconditioned by a shifted Laplace multi-grid method. Journal of Computational and Applied Mathematics, 236, pp. 281-293, 2011
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. NLAA 2013 http://onlinelibrary.wiley.com/doi/10.1002/nla.1882/abstract
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_helmholtz.html

May 2, 2013

