Deflated Krylov Acceleration of the Schwarz Domain Decomposition Method

Kees Vuik, A. Segal, F.J. Vermolen and J. Frank
c.vuik@math.tudelft.nl
http://ta.twi.tudelft.nl/users/vuik/
Delft University of Technology

Woudschoten Conference of the Dutch-Flemish Numerical Analysis Communities Woudschoten, 25-27 September, 2002

1. Introduction
2. Deflated Krylov methods
3. Deflation compared with Coarse Grid Correction
4. Convergence of DICCG
5. Vertex centered approach
6. Conclusions

Block ILU

TUDelft

Block ILU

Block ILU with deflation

ICCG

TU Delft

ICCG

Deflated ICCG

TU Delft

- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma
- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma
- Parallel preconditioners Block variants see above ILU Bastian, Horton, Vuik, Nooyen, Wesseling SPAI Grote, Huckle, Benzi, Tuma, Chow, Saad
- Robust preconditioners (M)ICCG vd Vorst, Meijering, Gustafsson ILUT Saad, MRILU Ploeg, Wubs Navier-Stokes Elman, Silvester, Wathen, Golub RIF Benzi, Tuma
- Parallel preconditioners Block variants see above ILU Bastian, Horton, Vuik, Nooyen, Wesseling SPAI Grote, Huckle, Benzi, Tuma, Chow, Saad
- Acceleration of parallel preconditioners CGC Notay, vd Velde, Benzi, Frommer, Nabben, Szyld, Chan, Mathew, Dryja, Widlund, Padiy, Axelsson, Polman Deflation Nicolaides, Mansfield, Frank, Vuik

Morgan, Chapman, Saad, Burrage, Ehrel, Pohl
FETI Farhat, Roux, Mandel, Klawonn, Widlund

A is SPD, Conjugate Gradients

$$
P=I-A Z E^{-1} Z^{T} \text { with } E=Z^{T} A Z
$$

and $Z=\left[z_{1} \ldots z_{m}\right]$, where z_{1}, \ldots, z_{m} are independent deflation vectors.

Properties

1. $P^{T} Z=0$ and $P A Z=0$
2. $P^{2}=P$
3. $A P^{T}=P A$

$$
x=\left(I-P^{T}\right) x+P^{T} x
$$

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x, \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b,
\end{aligned}
$$

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x, \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b, \quad A P^{T} x=P A x=P b .
\end{aligned}
$$

$$
\begin{aligned}
x & =\left(I-P^{T}\right) x+P^{T} x, \\
\left(I-P^{T}\right) x=Z E^{-1} Z^{T} A x & =Z E^{-1} Z^{T} b, \quad A P^{T} x=P A x=P b .
\end{aligned}
$$

DICCG

$k=0, \hat{r}_{0}=P r_{0}, p_{1}=z_{1}=L^{-T} L^{-1} \hat{r}_{0} ;$
while $\left\|\hat{r}_{k}\right\|_{2}>\varepsilon$ do

$$
\begin{aligned}
& k=k+1 \\
& \alpha_{k}=\frac{\left(\hat{r}_{k-1}, z_{k-1}\right)}{\left(p_{k}, P A p_{k}\right)} \\
& x_{k}=x_{k-1}+\alpha_{k} p_{k} \\
& \hat{r}_{k}=\hat{r}_{k-1}-\alpha_{k} P A p_{k} \\
& z_{k}=L^{-T} L^{-1} \hat{r}_{k} ; \\
& \beta_{k}=\frac{\left(\hat{r}_{k}, z_{k}\right)}{\left(\hat{r}_{k-1}, z_{k-1}\right)} ; \quad p_{k+1}=z_{k}+\beta_{k} p_{k}
\end{aligned}
$$

end while

TUDelft

$$
\begin{aligned}
& P=I-A Z E^{-1} Y^{T} \text { with } E=Y^{T} A Z \\
& Q=I-Z E^{-1} Y^{T} A
\end{aligned}
$$

and $Z=\left[z_{1} \ldots z_{m}\right], Y=\left[y_{1} \ldots y_{m}\right]$ where z_{1}, \ldots, z_{m} and y_{1}, \ldots, y_{m} are independent sets of deflation vectors.

Properties

1. $P A Z=Y^{T} P=0$ and $Y^{T} A Q=Q Z=0$
2. $P^{2}=P$ and $Q^{2}=Q$
3. $P A=A Q$

$$
x=(I-Q) x+Q x,
$$

$$
\begin{aligned}
x & =(I-Q) x+Q x, \\
(I-Q) x=Z E^{-1} Y^{T} A x & =Z E^{-1} Y^{T} b,
\end{aligned}
$$

$$
\begin{aligned}
x & =(I-Q) x+Q x, \\
(I-Q) x=Z E^{-1} Y^{T} A x & =Z E^{-1} Y^{T} b, \quad A Q x=P A x=P b .
\end{aligned}
$$

$$
\begin{aligned}
x & =(I-Q) x+Q x, \\
(I-Q) x=Z E^{-1} Y^{T} A x & =Z E^{-1} Y^{T} b, \quad A Q x=P A x=P b .
\end{aligned}
$$

Preconditioning

$$
\begin{aligned}
& K^{-1} P A \tilde{x}=K^{-1} P b, \quad Q x=Q \tilde{x} \\
& P A K^{-1} \tilde{y}=P b, \quad Q x=Q K^{-1} \tilde{y}
\end{aligned}
$$

$$
\begin{aligned}
x & =(I-Q) x+Q x, \\
(I-Q) x=Z E^{-1} Y^{T} A x & =Z E^{-1} Y^{T} b, \quad A Q x=P A x=P b .
\end{aligned}
$$

Preconditioning

$$
\begin{aligned}
& K^{-1} P A \tilde{x}=K^{-1} P b, \quad Q x=Q \tilde{x} \\
& P A K^{-1} \tilde{y}=P b, \quad Q x=Q K^{-1} \tilde{y}
\end{aligned}
$$

Systems can be solved by: GMRES, GCR, Bi-CGSTAB,...

TU Delft

original domain

TU Delft

subdomain 1

subdomain 2

$$
\bar{\Omega}=\bigcup_{i=1}^{m} \bar{\Omega}_{i}
$$

m is number of subdomains z_{1}, \ldots, z_{m} deflation vectors

- $z_{i}=1$ on $\bar{\Omega}_{i}$
- $z_{i}=0$ on $\Omega \backslash \bar{\Omega}_{i}$

Remarks

- The matrix E is sparse
- $K_{\text {eff }}(P A)$ decreases for increasing m
- Work to invert E increases for increasing m
- Optimal value of m ?

TU Delft

Definition: $P_{D}=I-A Z E^{-1} Z^{T}$.
$x=\left(I-P_{D}^{T}\right) x+P_{D}^{T} x$,
where $\left(I-P_{D}^{T}\right) x=Z E^{-1} Z^{T} b$ and $A P_{D}^{T} x=P_{D} A x=P_{D} b$

DICCG

$k=0, \hat{r}_{0}=P_{D} r_{0}, p_{1}=z_{1}=L^{-T} L^{-1} \hat{r}_{0} ;$
while $\left\|\hat{r}_{k}\right\|_{2}>\varepsilon$ do
$k=k+1$;
$\alpha_{k}=\frac{\left(\hat{r}_{k-1}, z_{k-1}\right)}{\left(p_{k}, P_{D} A p_{k}\right)} ;$
$x_{k}=x_{k-1}+\alpha_{k} p_{k}$;
$\hat{r}_{k}=\hat{r}_{k-1}-\alpha_{k} P_{D} A p_{k} ;$
$z_{k}=L^{-T} L^{-1} \hat{r}_{k} ;$
$\beta_{k}=\frac{\left(\hat{r}_{k}, z_{k}\right)}{\left(\hat{r}_{k-1}, z_{k-1}\right)} ; \quad p_{k+1}=z_{k}+\beta_{k} p_{k} ;$
end while
TU Delft

Definition

- $Z \in \mathbb{R}^{n \times m}$ with independent columns.
$-E=Z^{T} A Z \in \mathbb{R}^{m \times m}, E$ is SPD.
- $P_{C}=L^{-T} L^{-1}+\gamma Z E^{-1} Z^{T}$.

CICCG

$$
\begin{aligned}
& k=0, r_{0}=b-A x_{0}, p_{1}=z_{1}=L^{-T} L^{-1} r_{0} ; \\
& \text { while }\left\|r_{k}\right\|_{2}>\varepsilon \text { do } \\
& \quad k=k+1 ; \\
& \quad \alpha_{k}=\frac{\left(r_{k-1}, z_{k-1}\right)}{\left(p_{k} A p_{k}\right)} ; \\
& \quad x_{k}=x_{k-1}+\alpha_{k} p_{k} ; \\
& r_{k}=r_{k-1}-\alpha_{k} A p_{k} ; \\
& z_{k}=P_{C} r_{k}=L^{-T} L^{-1} r_{k}+\gamma Z E^{-1} Z^{T} r_{k} ; \\
& \quad \beta_{k}=\frac{\left(r_{k}, z_{k}\right)}{\left(r_{k-1}, z_{k-1}\right)} ; \quad p_{k+1}=z_{k}+\beta_{k} p_{k} ;
\end{aligned}
$$

end while
TUDelft

$$
P_{D}=I-A Z E^{-1} Z^{T}
$$

$$
P_{C}=I+Z E^{-1} Z^{T}
$$

$$
P_{D}=I-A Z E^{-1} Z^{T} \quad P_{C}=I+Z E^{-1} Z^{T}
$$

Properties of P_{D}

- $P_{D} A$ is symmetric and positive semidefinite
- P_{D} is a projection, $P_{D} A Z=0$
- since $P_{D} A$ is singular, a good termination criterion is important

$$
P_{D}=I-A Z E^{-1} Z^{T} \quad P_{C}=I+Z E^{-1} Z^{T}
$$

Properties of P_{D}

- $P_{D} A$ is symmetric and positive semidefinite
- P_{D} is a projection, $P_{D} A Z=0$
- since $P_{D} A$ is singular, a good termination criterion is important

Properties of P_{C}

- P_{C} is symmetric positive definite
- $A^{\frac{1}{2}}\left(P_{C}-I\right) A^{\frac{1}{2}}$ is a projection

TUDelft

Definition
 Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.

 Take $Z=\left[v_{1} \ldots v_{m}\right]$.
TU Delft

Definition

Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.
Take $Z=\left[v_{1} \ldots v_{m}\right]$.

Theorem 1

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{C} A$ is $\left\{1+\lambda_{1}, \ldots, 1+\lambda_{m}, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$

TU Delft

Definition

Eigenpair $\left\{\lambda_{i}, v_{i}\right\}$, so $A v_{i}=\lambda_{i} v_{i}$ with $0<\lambda_{1} \leq \ldots \leq \lambda_{n}$.
Take $Z=\left[v_{1} \ldots v_{m}\right]$.
Theorem 1

- the spectrum of $P_{D} A$ is $\left\{0, \ldots, 0, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$
- the spectrum of $P_{C} A$ is $\left\{1+\lambda_{1}, \ldots, 1+\lambda_{m}, \lambda_{m+1}, \ldots, \lambda_{n}\right\}$

Corollary
DICCG converges faster than CICCG.

TU Delft

Residual with Block IC

TU Delft

Residual with Block IC

Error with Block IC

Residual with Block IC

TUDelft

Residual with Block IC

Error with Block IC

Theorem 2

Let A be SPD, and $A^{*}, A-A^{*}$ be SPSD, and $\operatorname{span} Z=\operatorname{null}\left(A^{*}\right)$
Furthermore preconditioner K is SPD and $K=L L^{T}$ then

$$
K_{e f f}\left(L^{-1} P A L^{-T}\right) \leq \frac{\lambda_{n}\left(L^{-1} A L^{-T}\right)}{\lambda_{m+1}\left(L^{-1} A^{*} L^{-T}\right)}
$$

1. Removing the smallest eigenvalues from the spectrum leads to the greatest improvement for PDE problems.
2. A good preconditioner for A^{*} may be attractive (Kaasschieter).
3. A preconditioner for A^{*} may increase the largest eigenvalue of $L^{-1} A L^{-T}$.

Block system:

$$
\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 m} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \ldots & A_{m m}
\end{array}\right]\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Subdomain block Jacobi matrix $K(A) \in \mathbb{R}^{n \times n}$

$$
K(A)=\left[\begin{array}{lll}
A_{11} & & \\
& \ddots & \\
& & A_{m m}
\end{array}\right]
$$

Block matrices $K_{j j}=A_{j j}$ are Stieltjes matrices

Definition
Define the matrix A^{*} by

$$
A^{*}=K-\operatorname{diag}\left(r_{1}, \ldots, r_{n}\right),
$$

where $r_{i}=\sum_{j=1}^{n} k_{i j}\left(i^{\text {th }}\right.$ rowsum $)$
Block matrices $A_{j j}^{*}$ have zero rowsums $\Rightarrow Z$ is a basis for null $\left(A^{*}\right)$.

Theorem 3

If A is an irreducibly diagonally dominant Stieltjes matrix and A^{*} has only irreducible blocks, then the hypotheses of Theorem 2 are met.

$$
\begin{aligned}
& A=\left(\begin{array}{ccc|ccc}
2 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
\hline 0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right) \\
& A^{*}=\left(\begin{array}{ccc|ccc}
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

TUDelft

2 D problem, 3×9 points, 3 blocks

TU Delft

Poisson equation $-\Delta u(x, y)=f$.
Iterations divided by the subdomain resolution $n_{x} \equiv n_{y} \in\{10,50,200\}$

TU Delft

subdomain grid size 50×50, wall clock time, Cray T3E

Data distribution

subdomain 2

TU Delft

$$
z_{i}=1 \text { on } \Omega_{i} \text { and } z_{i}=0 \text { on } \Omega \backslash \bar{\Omega}_{i}
$$

1. no overlap
$z_{i}=1$ at one subdomain
$z_{i}=0$ at other subdomains
2. complete overlap
$z_{i}=1$ at all subdomains
3. average overlap
$z_{i}=\frac{1}{n_{\text {neighbors }}}$ at all subdomains
4. weighted overlap $(-\operatorname{div}(\sigma \nabla u)=f)$

$$
z_{i}=\frac{\sigma(i)}{\sum \sigma(\text { neighbors })}
$$

Error for Block IC and Deflation

TU Delft

Error for Block IC and Deflation

Error for Block IC and CGC

Error for Block IC and Deflation

TU Delft

Error for Block IC and Deflation

Error for Block IC and CGC

Iterations

TU Delft

Iterations

TU Delft

Iterations

Wall clock time

- DICCG is more efficient than CICCG
- Block preconditioned Krylov methods combined with Deflation or CGC are well parallelizable (scalable, good speed up)
- For the vertex centered case, the weighted overlap strategy is optimal
- Choices for the deflation vectors lead to comparable results in DICCG and CICCG
- DICCG is a robust and efficient method to solve diffusion problems with discontinuous coefficients
- http://ta.twi.tudelft.nl/nw/users/vuik/pub_it_def.html
- C. Vuik A. Segal J.A. Meijerink

An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients J. Comp. Phys., 152, pp. 385-403, 1999.

- J. Frank and C. Vuik

On the construction of deflation-based preconditioners SIAM Journal on Scientific Computing, 23, pp. 442-462, 2001

- C. Vuik and A. Segal and L. El Yaakoubi and E. Dufour A comparison of various deflation vectors applied to elliptic problems with discontinuous coefficients Applied Numerical Mathematics, 41, pp. 219-233, 2002

Krylov Ar

Preconditioned Krylov
$L^{-T} L^{-1} A r$

Block Preconditioned Krylov
$\sum_{i=1}^{m}\left(L_{i}^{-T} L_{i}^{-1}\right) A r$

Block Preconditioned Deflated Krylov $\sum_{i=1}^{m}\left(L_{i}^{-T} L_{i}^{-1}\right) P A r$

$$
\nabla \cdot(\mathbf{a}(x, y) u(x, y))-\Delta u(x, y)=f \text { on }(0,1) \times(0,1)
$$

recirculating wind field $a_{1}(x, y)=-80 x y(1-x), a_{2}(x, y)=80 x y(1-y)$ boundary conditions $u(x, 0) \equiv u(y, 0) \equiv u(x, 1) \equiv 0, u_{x}(1, y)=0$

Subdomain grid 50×50, truncated GCR

m	no deflation	deflation
1	42	42
4	122	122
9	224	191
16	314	235
25	369	250
36	518	283
49	1007	377

TU Delft

