Specialized QR Factorization for Tensor Algorithms on GPUs

Keywords: High-Performance Computing (HPC), Numerical Linear Algebra, GPU programming, Data Analytics, Tensor Decomposition

Contact: Jonas Thies (j.thies@tudelft.nl)

"Tensor-Train" decomposition of a 5dimensional data tensor into five 2- and 3-dimensional tensors.

NVidia H100 ("Hopper") GPU

Topic summary

In many modern data analysis algorithms, as well as simulation of highdimensional problems like stochastic PDEs or quantum physics applications, tensors (the multi-dimensional generalization of matrices) are playing a central role [1]. Compared to classical (dense) linear algebra, tensor algorithms require a larger variety of "building blocks" that have to run efficiently on computing hardware. In this thesis, you will develop such building blocks for computing a low-rank approximation (tensor decomposition) on a modern "Graphics-Processing Unit" (GPU).

For decomposing large multi-dimensional data into a product of multiple much smaller tensors, a sequence of QR factorizations and/or Singular Value Decompositions (SVDs) of large rectangular or "tall & skinny" matrices are used. Common implementations for GPUs are not optimized for this case and either achieve poor performance or do not work robustly for possibly rank-deficient input matrices. We therefor suggest to implement and analyze a specialized QR factorization method for large data on current GPUs based on the TSQR algorithm introduced in [2]. Older GPUs provide insufficient high-bandwidth memory and cache (or shared memory) for this kind of algorithm. However, on newer systems such as, e.g., Nvidia GH200, implementing a special TSQR-like algorithm could be feasible and faster by orders of magnitude than conventional implementations.

The thesis will be conducted in close collaboration with the German Aerospace Center (DLR) in Cologne

Required background

- The programming can be done in C++ (preferred) or Python
- CUDA programming (or at least keen interest in learning)
- Numerical linear algebra

Literature

[1] S. Rabanser, O. Shchur, and S. Günnemann, "Introduction to Tensor Decompositions and their Applications in Machine Learning," 2017, doi: 10.48550/ARXIV.1711.10781.

[2] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, "Communicationoptimal Parallel and Sequential QR and LU Factorizations," SIAM Journal on Scientific Computing, vol. 34, no. 1, pp. A206–A239, Jan. 2012, doi: 10.1137/080731992.