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1. (a) Consider the test equation y′ = λy, then it follows that

k1 = λ∆twn (1)

k2 = λ∆t

(
wn +

1

2
λ∆twn

)
(2)

=

(
λ∆t+

1

2
(λ∆t)2

)
wn (3)

k3 = λ∆t

(
wn − λ∆twn + 2

(
λ∆t+

1

2
(λ∆t)2

)
wn

)
(4)

=
(
λ∆t+ (λ∆t)2 + (λ∆t)3)wn (5)

wn+1 = wn + αλ∆twn + β

(
λ∆t+

1

2
(λ∆t)2

)
wn (6)

+γ
(
λ∆t+ (λ∆t)2 + (λ∆t)3)wn (7)

=

(
1 + (α + β + γ)λ∆t+

(
1

2
β + γ

)
(λ∆t)2 + γ (λ∆t)3

)
wn (8)

Hence the amplification factor is given by

Q(λ∆t) = 1 + (α + β + γ)λ∆t+

(
1

2
β + γ

)
(λ∆t)2 + γ (λ∆t)3 . (9)

(b) The local truncation error for the test equation y′ = λy is given by

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn. (10)

The Taylor Series around 0 for eλ∆t is:

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +

1

6
(λ∆t)3 +O(∆t4). (11)

Hence, this gives

eλ∆t −Q(λ∆t) = (1− α− β − γ)λ∆t+

(
1

2
− 1

2
β − γ

)
(λ∆t)2 (12)

+

(
1

6
− γ
)

(λ∆t)3 +O(∆t4). (13)

and hence τn+1(∆t) = O(∆t3) only if

α + β + γ = 1, (14)
1

2
β + γ =

1

2
, (15)

γ =
1

6
, (16)

(17)
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which have as solution

α =
1

6
, (18)

β =
2

3
, (19)

γ =
1

6
. (20)

(21)

(c) Let x1 = y and x2 = y′, then it follows that y′′ = x′2, and hence we get

2x′2 + 2x2 + x1 = 2t,
x2 = x′1.

(22)

This expression is written as

x′1 = x2,
x′2 = −1

2
x1 − x2 + t.

(23)

Finally, we get the following matrix–form:[
x1

x2

]′
=

[
0 1
−1

2
−1

] [
x1

x2

]
+

[
0
t

]
. (24)

Here, we have A =

[
0 1
−1

2
−1

]
and f =

[
0
t

]
. The initial conditions are given by[

x1(0)
x2(0)

]
=

[
1
1

]
.

(d) To this extent, we determine the eigenvalues of the matrix A. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of A are
given by −1

2
± 1

2
i. Using ∆t = 2, it follows that

Q(λ∆t) = 1 + λ∆t+
1

2
λ2∆t2 +

1

6
λ3∆t3 (25)

= 1 + (−1 + i) +
1

2
(−1 + i)2 +

1

6
(−1 + i)3 (26)

=
1

3
− 1

3
i. (27)

Herewith, it follows that |Q(λ∆t)|2 = 2
9
< 1. Hence for ∆t = 2, it follows that the

method applied to the given system is stable. Note that this conclusion holds for
both the eigenvalues of A since they are complex conjugates.

(e) The given method, applied to the system x′ = Ax+ f , gives

k1 = ∆t
(
Awn + f (tn)

)
k2 = ∆t

(
A
(
wn + 1

2
k1

)
+ f

(
tn + 1

2
∆t
))

k3 = ∆t
(
A (wn − k1 + 2k2) + f (tn + ∆t)

)
wn+1 = wn + 1

6
(k1 + 4k2 + k3)

(28)
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With the initial condition and ∆t = 2, this gives

k1 =

[
2
−3

]

k2 =

[
−1
1

]

k3 =

[
12
−5

]

w1 =

[
8/3

1/3

]
(29)
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2. (a) First, we check the boundary conditions:

u(0) = 0− 1− e0

1− e
=

1− 1

1− e
= 0, u(1) = 1− 1− e1

1− e
= 0. (30)

Further, we have

u′(x) = 1 +
ex

1− e
, (31)

u′′(x) =
ex

1− e
. (32)

Hence, we immediately see

−u′′(x) + u′(x) = − ex

1− e
+ 1 +

ex

1− e
= 1. (33)

Hence, the solution u(x) = 1− 1−ex
1−e satisfies the differential and the boundary condi-

tions, and therewith u(x) is the solution to the boundary value problem (uniqueness
can be demonstrated in a straightforward way, but this was not asked for).

(b) The domain of computation, being (0, 1), is divided into subintervals with mesh
points, we set xj = j∆x, where we use n unknowns, such that xn+1 = (n+1)∆x = 1.
We are looking for a discretization with an error of second order, O((∆x)2). To this
extent, we use the following central differences approximation at xj:

u′(xj) ≈
u(xj+1)− u(xj−1)

2∆x
, for j ∈ {1, . . . , n}. (34)

We note that the above formula can be derived formally by writing the derivative as

u′(xj) =
α0u(xj−1) + α1u(xj) + α2u(xj+1)

∆x
, (35)

and solve α0, α1 and α2 from checking the zeroth, first and second order derivatives
of u(x). Further, the second order derivative is approximated by

u′′(xj) ≈
u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
. (36)

Since we approximate the derivatives at the point xj, we use Taylor series expansion
about xj, to obtain:

u(xj+1) = u(xj + ∆x) = u(xj) + ∆xu′(xj) +
(∆x)2

2
u′′(xj) +

(∆x)3

6
u′′′(xj) +O((∆x)4),

u(xj−1) = u(xj −∆x) = u(xj)−∆xu′(xj) +
(∆x)2

2
u′′(xj)−

(∆x)3

6
u′′′(xj) +O((∆x)4),

(37)
This gives

−u(xj+1)− 2u(xj) + u(xj−1)

(∆x)2
+
u(xj+1)− u(xj−1)

2∆x
= −u′′(xj) + u′(xj)

+
O((∆x)3)

2∆x
+
O((∆x)4)

(∆x)2
= −u′′(xj) + u′(xj) +O((∆x)2).

(38)
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Hence the error is second order, that is O((∆x)2). Next, we neglect the truncation
error, and set wj := u(xj) to get

−wj+1 − 2wj + wj−1

(∆x)2
+
wj+1 − wj−1

2∆x
= 1, for j ∈ {1, . . . , n}. (39)

At the boundaries, we see for j = 1 and j = n, upon substituting w0 = 0 and
wn+1 = 0, respectively:

−w2 − 2w1 + 0

(∆x)2
+
w2 − 0

2∆x
= 1,

−0− 2wn + wn−1

(∆x)2
+

0− wn−1

2∆x
= 1.

(40)

This can be rewritten more neatly as follows:

−w2 + 2w1

(∆x)2
+

w2

2∆x
= 1,

2wn − wn−1

(∆x)2
− wn−1

2∆x
= 1.

(41)

(c) Next, we use ∆x = 1/4, then, from equations (39) and (41), one obtains the following
system

32w1 − 14w2 = 1 (42)

−18w1 + 32w2 − 14w3 = 1 (43)

−18w2 + 32w3 = 1 (44)
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3. (a) The equation that needs to be solved is

f(p0) +
f(p1)− f(p0)

p1 − p0

(p2 − p0) = 0.

Solving this equation gives the steps:

f(p1)− f(p0)

p1 − p0

(p2 − p0) = −f(p0),

⇒ p2 − p0 = − p1 − p0

f(p1)− f(p0)
f(p0),

⇒ p2 = p0 −
p1 − p0

f(p1)− f(p0)
f(p0).

We write the above as one quotient:

p2 =
f(p1)− f(p0)

f(p1)− f(p0)
p0 −

p1 − p0

f(p1)− f(p0)
f(p0),

⇒ p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
. (45)

Now we have two options:

A. Rewrite the above formula to the form given in the exercise, with n = 2, and
conclude the formula for K1;

B. Fill in the formula for K1 into the formula for pn, with n = 2, given in the
exercise and show this results in the same formula.

Note: Only one of the options has to be present within your answer and earns at
most 1/2 point.

Option A: We can rewrite Equation (45) to:

p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
,

⇒ p2 =
p0f(p1)− p1f(p0)− p1f(p1) + p1f(p1)

f(p1)− f(p0)
,

⇒ p2 =
p1(f(p1)− f(p0))− (p1 − p0)f(p1)

f(p1)− f(p0)
,

⇒ p2 = p1 −
p1 − p0

f(p1)− f(p0)
f(p1),

which is indeed of the form given in the exercise. Therefore, K1 indeed has the
formula

K1 =
f(p1)− f(p0)

(p1 − p0)
.

Option B: The formula of the exercise, with n = 2 and the given formula for K1 is:

p2 = p1 −
p1 − p0

f(p1)− f(p0)
f(p1).
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We write the above as one quotient:

p2 =
f(p1)− f(p0)

f(p1)− f(p0)
p1 −

p1 − p0

f(p1)− f(p0)
f(p1),

⇒ p2 =
p0f(p1)− p1f(p0)

f(p1)− f(p0)
.

The above equation is equal to Equation (45). Therefore, K1 indeed has the formula

K1 =
f(p1)− f(p0)

p1 − p0

.

(b) Note: Every miscalculation in the calculation of K1 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Given that p0 = 1 and p1 = 2, we first calculate K1, using the values from the given
table:

K1 =
f(p1)− f(p0)

p1 − p0

,

=
f(2)− f(1)

2− 1
,

= f(2)− f(1),

= 2− (−1),

= 3.

Note: Every miscalculation in the calculation of p2 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Note: The value of p2 should be consistent with your value for K1.

Now p2 can be calculated with the Secant method, with n = 2 and the values from
the given table:

p2 = p1 −
f(p1)

K1

,

= 2− f(2)

3
,

= 2− 2

3
,

=
4

3
.

(c) The formula for K2 is given by

K2 =
f(p2)− f(p1)

p2 − p1

.

Motivation could be a repetition of the derivation of K1. It is also sufficient if
a motivation is given that all indices are increased by 1. No motivation gives a
subtraction of 1/2 point.

Note: Every miscalculation in the calculation of K2 gives a subtraction of 1/4 point,
with at most 3/4 point being subtracted.

Note: The value of K2 should be consistent with your formula for K2.
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This formula gives

K2 =
f(p2)− f(p1)

p2 − p1

,

=
f(4

3
)− f(2)
4
3
− 2

,

=

(
−2

9

)
− 2

−2
3

,

=
−20

9

−2
3

,

=
10

3
,

Note: Every miscalculation in the calculation of p3 gives a subtraction of 1/4 point,
with at most 3/4 point being subtracted.

Note: The value of p3 should be consistent with your value for K2.

and finally

p3 = p2 −
f(p2)

K2

,

=
4

3
−
f(4

3
)

10
3

,

=
4

3
−
−2

9
10
3

,

=
4

3
− 1

15
,

=
7

5
.
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