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1. (a) Consider the test equation ¢y’ = Ay, then it follows that

ky = MAt (wn + %)\Atwn) (2)

- ()\At + % (/\At)Q) Wy (3)

ks = MAt (wn — M\tw,, + 2 <)\At + % ()\At)2) wn) (4)

= (AAt+ (AAL)® + (AAL)?) w, (5)

Wy = W, + aAAtw, + 3 ()\At + % (AAt)2> wy, (6)
+v (AAE + (AAL)? + (AAL)?) w, (7)

1
= (1 + (a+ B+ 7)AAL + (56 + 7) (AAL)? + 5 (AAt)3) (U (8)
Hence the amplification factor is given by
1
QAAL) =14 (a+ B+ 7)AAL + (56 + v) (AA)? + 4 (AAL)°. (9)

(b) The local truncation error for the test equation y' = Ay is given by
M — Q(AAL)

Toi1(AL) = AL Yn- (10)
The Taylor Series around 0 for e*? is:
1 1
A = 14 AL+ 3 (AL + 5 (AAL)® + O(AtY). (11)

Hence, this gives

A QAL = (1—a—B—7)AAL+ (% - %5 - 7> MA? (12)

+ (% - 7> (AL + O(AL). (13)
and hence 7,,,1(At) = O(At?) only if
a+pB+y = 1, (14)
By = o, (15)
v = (16)



()

()

which have as solution

1
= -, 18
o« = ¢ (18)
2
= - 19
g2 (19)
1
= . 20
gl c (20)
(21)
Let 1 = y and xo = ¢/, then it follows that y” = x}, and hence we get
/ —
25 + %$2 + x1 = 2t, (22)
XTo = T7y.
This expression is written as
x| = g,
xh = —%xl — Ty + 1. (23)

Finally, we get the following matrix—form:

=1 AR B o

0 1 0

Here, we have A = 1 and f = nE The initial conditions are given by

o=l

To this extent, we determine the eigenvalues of the matrix A. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of A are
given by —% & 2i. Using At = 2, it follows that

D=

1 1
QAL = 1+>\At+§)\2At2+g)\3At3 (25)
N o 1 3
= 1+<—1+2)+§(—1+Z) +6(—1+@) (26)
11
- - _ 27
5~ 3! (27)

Herewith, it follows that |Q(AA¢#)[* = 2 < 1. Hence for At = 2, it follows that the
method applied to the given system is stable. Note that this conclusion holds for
both the eigenvalues of A since they are complex conjugates.

The given method, applied to the system 2’ = Az + f, gives

(k= At (Aw, + [ (tn))

(28)
ky = At (A (w,, — ky + 2k,) +i(tn + At))

\ Wpy1 = wn+%(kl+4ﬁ2+k3)



With the initial condition and At = 2, this gives

(

Ey

(29)



(a) First, we check the boundary conditions:

1—e® 1-1 1—e¢t
u(0) =0 e 11— 0, wu(l) - 0 (30)
Further, we have
u(z) = 1+ < (31)
N 1—e¢’
W'(z) = — (32)
1—e

Hence, we immediately see

—u"(x) +u(z) = — < +1+ < 1 (33)
1—e 1—e '

Hence, the solution u(z) = 1— % satisfies the differential and the boundary condi-
tions, and therewith u(x) is the solution to the boundary value problem (uniqueness
can be demonstrated in a straightforward way, but this was not asked for).

(b) The domain of computation, being (0, 1), is divided into subintervals with mesh
points, we set z; = jAz, where we use n unknowns, such that z, ., = (n+1)Az = 1.
We are looking for a discretization with an error of second order, O((Ax)?). To this
extent, we use the following central differences approximation at xz;:

w(@j1) —ulrj—1)
2Ax

u'(x5) ~

, for je{l,...,n}. (34)

We note that the above formula can be derived formally by writing the derivative as

aou (1) + onu(;) + asu(z;r1)

o(z;) = N , (35)

and solve «p, a1 and ay from checking the zeroth, first and second order derivatives
of u(x). Further, the second order derivative is approximated by

u(wj1) — 2u(w;) + ulxj1)

(Az)?

u(x;) ~

(36)

Since we approximate the derivatives at the point z;, we use Taylor series expansion
about z;, to obtain:

w(zjp) = u(z; + Ax) = u(x;) + Az’ (z;) + @u"(:ﬁj) + AGI) u"(z;) + O((Az)*),
(1) = ey = Aa) = () — Aanl(n) + D (0) — By 4 o2y,
. (37)
is gives
Cu(mje) — ?Z(j)g) +u(z_q) u(xj+1)2;;(xj_1) () + o (ay)
(38)

O((A2)) | O((aw)Y)
2Ax (Az)?

= —u"(z;) + u'(z;) + O((Ax)?).



Hence the error is second order, that is O((Ax)?). Next, we neglect the truncation
error, and set w; 1= u(z;) to get

_ Wi = 2wyt Wir | Wi — Wi
(Az)? 2Ax

=1, forje{l,...,n}. (39)

At the boundaries, we see for j = 1 and j = n, upon substituting wg = 0 and
wy1 = 0, respectively:
wy — 2w +0  we—0

=1
(Ax)? oA ’

(40)
02wy +wpy | 0 —wny 1
(Ax)? 2Ar
This can be rewritten more neatly as follows:
—Wo + 2w1 wWo
=1
(Ax)? ToAr
(41)
2wn — Wp-1 Wp—1 -1

(Az)2  2Az

Next, we use Az = 1/4, then, from equations (39) and (41), one obtains the following
system

18w + 32w, — ldws = 1 (43)
—1811)2 + 321113 = 1 (44)



3.

(a) The equation that needs to be solved is

f(p1) — f(po)

Flpo) + P1—Do

(p2 — po) = 0.

Solving this equation gives the steps:

f(p1) — f(po)
P1— Do

oy — __ Pr7Po
= P2 — Po Flpr) = f(pg)ﬂp())’
P1— Do

P2 =0 ) = Flpo)

(P2 — po) = —f(po);

=

f(po).

We write the above as one quotient:

_Sp) = Fpo)  pi—po
P2 = )~ fn) T — ) P
Pof(pl) - plf(Po).

f(pl) - f(po)

= P2 =

(45)

Now we have two options:

A. Rewrite the above formula to the form given in the exercise, with n = 2, and
conclude the formula for Ki;

B. Fill in the formula for K into the formula for p,, with n = 2, given in the
exercise and show this results in the same formula.

Note: Only one of the options has to be present within your answer and earns at

most /2 point.

Option A: We can rewrite Equation (45) to

Dy = pof(p1) — p1f(po)
’ f@ﬂ—ﬂm)’

~pof(p1) = pif(po) — pif(p1) + pif(p1)
M Flo0) = fo |
_ pi(f(p1) = f(po)) — (pr — po) f(p1)
M f(or) — T(po) |
P1—Po f(p1),

=T ) T F )

which is indeed of the form given in the exercise. Therefore, K; indeed has the

formula
f(p1) — f(po).

K, =
' (Pl - Po)

Option B: The formula of the exercise, with n = 2 and the given formula for K; is:

R 2 S
P2=p —f(p1) — f(po)f(pl)'



We write the above as one quotient:

_Sp) = fpo)  pi—po
P2 = o) = Fo)Pt Flon) = fp)? P
_ pof(p1) — plf(Po).

f(pl) - f(po)

The above equation is equal to Equation (45). Therefore, K indeed has the formula

K, - fp1) = f(po)

P1— Do

= P2

Note: Every miscalculation in the calculation of K gives a subtraction of 1/4 point,
with at most /2 point being subtracted.

Given that po = 1 and p; = 2, we first calculate K, using the values from the given
table:

f(p1) — f(po)

Ky =———,
P1— Po
_f@ - f)
2—1 7
= f(2) = f(1),

=3.

Note: Every miscalculation in the calculation of py gives a subtraction of 1/ point,
with at most /2 point being subtracted.

Note: The value of py should be consistent with your value for K.

Now ps can be calculated with the Secant method, with n = 2 and the values from
the given table:

_ _f(pl)
P2 =D Kl’
3
2
=2,
3
_4
=3

The formula for K> is given by

f(p2) — f(p1)
P2—nMn '

Ky =

Motivation could be a repetition of the derivation of K;. It is also sufficient if
a motivation is given that all indices are increased by 1. No motivation gives a
subtraction of 1/2 point.

Note: Fvery miscalculation in the calculation of Ky gives a subtraction of 1/4 point,
with at most 3/4 point being subtracted.

Note: The value of Ky should be consistent with your formula for Ks.

7



This formula gives

f(pz) — f(m)

Ky =
P2 — D1
f(3)— (2
é_ 9
3
_ (=5 -2
_2
3
_20
__09
_27
3
_10
=3

Note: Every miscalculation in the calculation of ps gives a subtraction of 1/ point,
with at most 3/4 point being subtracted.
Note: The value of p3 should be consistent with your value for K.

and finally
p:p_f(P2)
3 2 K27
_4 16
378
2
45
10 °
33
41
3 15
_T
=z



