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1. (a) Consider the test equation y′ = λy, then it follows that

wn+1 = wn + (1− θ)λ∆twn + θλ∆twn+1.

Solving for wn+1 gives

wn+1 =
1 + (1− θ)λ∆t

1− θλ∆t
wn.

Hence the amplification factor is given by

Q(λ∆t) =
1 + (1− θ)λ∆t

1− θλ∆t
.

(b) The local truncation error for the test equation y′ = λy is given by

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn.

The Taylor Series around 0 for eλ∆t is:

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +O(∆t3).

The Taylor Series around 0 for Q(λ∆t) is:

Q(λ∆t) = (1 + (1− θ)λ∆t)
1

1− θλ∆t

= (1 + (1− θ)λ∆t)
(
1 + θλ∆t+ θ2 (λ∆t)2 +O

(
∆t3

))
= 1 + λ∆t+ θ (λ∆t)2 +O

(
∆t3

)
.

Hence, this gives

eλ∆t −Q(λ∆t) =

(
1

2
− θ

)(
λ∆t2

)
+O

(
∆t3

)
,

and hence

τn+1(∆t) =

(
1
2
− θ

)
(λ∆t2) +O (∆t3)

∆t
yn

=

(
1

2
− θ

)
(λ∆t) yn +O

(
∆t2

)
= O (∆t) .

Furthermore, τn+1 = O(∆t2) if and only if θ = 1
2
.
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(c) To this extent, we determine the eigenvalues of the matrix. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of the
matrix are given by −1± 3i.

Using ∆t = 1, θ = 1
2

and taking λ = −1− 3i (alternatively, λ = −1 + 3i), it follows
that

Q(λ∆t) =
1 + 1

2
(−1− 3i)

1− 1
2

(−1− 3i)

=
1
2
− 3

2
i

3
2

+ 3
2
i
.

Herewith, it follows that |Q(λ∆t)|2 = 5
9
≤ 1. (Different methods to show this are

possible.)

As the two eigenvalues are each others complex conjugate, only one eigenvalue has
to be considered during the stability analysis. (Also correct: Repeating the above
calculations for the other eigenvalue.)

Hence for ∆t = 1 and θ = 1
2

it follows that the method applied to the given system
is stable.

(d) The given method, applied to the system x′ = Ax as given in the question and taking
θ = 1

2
, gives

wn+1 = wn +
1

2
∆tAwn +

1

2
∆tAwn+1.

Rearranging gives the linear system(
I − 1

2
∆tA

)
wn+1 =

(
I +

1

2
∆tA

)
wn.

With ∆t = 1 and the initial condition, w0 =
[
1 0

]T
, this gives[

3
2

3
2

−3
2

3
2

]
w1 =

[
1
2
−3

2
3
2

1
2

] [
1
0

]
=

[
1
2
3
2

]
.

Solving for w1 gives

w1 =

[
−1

3
2
3

]
.
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2. (a) p =
√

3 is a fixed point of the function g if g(
√

3) =
√

3. We calculate g(p):

g(p) = g(
√

3)

= −1

3
(
√

3)2 +
√

3 + 1

= −1 +
√

3 + 1

=
√

3,

So p =
√

3 is indeed a fixed-point of the function g.

(b) The function g is a polynomial and polynomials are continuous everywhere, so there
for g also is continuous on the interval [1, 2].

(c) First note that g is a parabola opening to the bottom and therefore g has a maximum
at the point where g′(x) = 0. We solve this equation:

g′(x) = 0

⇒ −2

3
x+ 1 = 0

⇒ x =
3

2
,

so the position of the maximum of g is located in the interval [1, 2] and attains the
value g(3/2) = 7/4. Therefore we conclude

g(x) ≤ 2 for x ∈ [1, 2].

The function g attains its minimum on the boundary of the interval [1, 2], so evalu-
ation of g at these points gives

g(1) = 5/3,

g(2) = 5/3.

Therefore we conclude
g(x) ≥ 1 for x ∈ [1, 2].

Putting everything together, we have found

1 ≤ g(x) ≤ 2, for x ∈ [1, 2].

as requested.

(d) The derivative of g is given by

g′(x) = −2

3
x+ 1,

which is a monotonous decreasing function. Therefore the minimum and maximum
value are located on the boundary of the interval, leading to

g′(2) ≤ g′(x) ≤ g′(1)
⇒ −1/3 ≤ g′(x) ≤ 1/3

⇒ |g′(x)| ≤ 1/3

So k = 1/3.
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(e) Remark: The final value of p1 should be given in 4 significant digits. Failure to do
so results in a deduction of 1

4
point if p1 = 5/3 is stated.

Remark: Calculation of p2 using p1 = 5/3 is incorrect, and causes a deduction of 1
4

point.
Remark: The final value of p2 should be given in 4 significant digits. Failure to do
so results in a deduction of 1

4
point if p2 = 47/27 is stated.

Straightforward application of the fixed point iteration gives

p1 = g(p0)

= g(2.000)

= 1.667,

and

p2 = g(p1)

= g(1.667)

= 1.741.
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3. (a) The linear Lagrangian interpolatory polynomial, with nodes x0 and x1, is
given by

L1(x) =
x− x1

x0 − x1

f(x0) +
x− x0

x1 − x0

f(x1). (1)

This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes x0, x1 and x2

is given by

L2(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) (2)

+
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1) (3)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2). (4)

This is also evident from application of the given formula.

(c) Obviously, L1(3) = 6 and L2(3) = 6 since the Lagrange interpolation polynomial
satisfies Ln(xk) = f(xk) for all points x0, x1, . . . , xn. Next, we compute L1(2) and
L2(2) for both linear and quadratic Lagrangian interpolation as approximations at
x = 2. For linear interpolation, we have

L1(2) =
2− 3

1− 3
· 3 +

2− 1

3− 1
· 6 =

9

2
, (5)

and for quadratic interpolation, one obtains

L2(2) =
(2− 3)(2− 4)

(1− 3)(1− 4)
· 3 +

(2− 1)(2− 4)

(3− 1)(3− 4)
· 6 +

(2− 1)(2− 3)

(4− 1)(4− 3)
· 5 =

16

3
. (6)
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