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1. (a) Consider the test equation ¢y’ = Ay, then it follows that
Solving for w, .1 gives

14 (1-0)AAL
R S VN

Hence the amplification factor is given by

14+ (1 —0)N\At

QAL = —T Ay

(b) The local truncation error for the test equation y' = Ay is given by

M — Q(NAL)

Tn+1(At> = At Yn-

The Taylor Series around 0 for e’ is:

=1+ MAE+ = 5 ()\At) + O(A).

The Taylor Series around 0 for Q(AA¢) is:

QAL = (1 (1 - OAM) — ;)\At

= (14 (1 — O)AAL) (1 + OAAL + 62 (AAL) + O (AF%))
=14+ AAt+ 0 (AAL) + O (AF) .

Hence, this gives
1
A QAL = (5 - 9) (A\AE) + O (AL,

and hence

—0) (AA?) + O (At%)
At

_ G - 9) (AAD) g, + O (AR) = O (At).

Toi1(AL) = (%

Yn

Furthermore, 7,11 = O(At?) if and only if § = 1
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To this extent, we determine the eigenvalues of the matrix. Subsequently, these
eigenvalues are substituted into the amplification factor. The eigenvalues of the
matrix are given by —1 + 3i.

Using At =1,0 = % and taking A\ = —1 — 37 (alternatively, A = —1 4+ 3i), it follows
that

1+ 1(-1-3i)
QAL = —2 ,
1—3(—1-30)
_i8
=3, 3
5 + b
Herewith, it follows that |Q(AAt)]* = 2 < 1. (Different methods to show this are

possible.)

As the two eigenvalues are each others complex conjugate, only one eigenvalue has
to be considered during the stability analysis. (Also correct: Repeating the above
calculations for the other eigenvalue.)

Hence for At =1 and 6 = % it follows that the method applied to the given system
is stable.

The given method, applied to the system ' = Az as given in the question and taking
0 =1 gives
29

1 1
wn_,_l = wn + §AtAwn + §AtAwn+1

Rearranging gives the linear system
1 1

With At =1 and the initial condition, w, = [1 O}T, this gives

4 el -

L[V V] [IV]

Solving for w, gives



2.

(a)

p = /3 is a fixed point of the function ¢ if g(v/3) = v/3. We calculate g(p):

g9(p) = g(v/3)

= (VB VB4

=-1+V3+1
:\/g’

So p = v/3 is indeed a fixed-point of the function g.

The function g is a polynomial and polynomials are continuous everywhere, so there
for g also is continuous on the interval [1,2].

First note that ¢ is a parabola opening to the bottom and therefore g has a maximum
at the point where ¢'(z) = 0. We solve this equation:

g'(z) =0
2
= —§x+1:O
3
= T=73

so the position of the maximum of g is located in the interval [1,2] and attains the
value g(3/2) = 7/4. Therefore we conclude

g(x) <2 forx e ll,2].

The function g attains its minimum on the boundary of the interval [1, 2], so evalu-
ation of ¢ at these points gives

Therefore we conclude
g(x) >1 forxell,2].

Putting everything together, we have found
1<g(x) <2, forxell,?2].
as requested.
The derivative of g is given by
2
g (z) = —3% +1,

which is a monotonous decreasing function. Therefore the minimum and maximum
value are located on the boundary of the interval, leading to

g2 < J) < ¢
= -1z < Jxz) < 13
= lg'(@)] < Vs

So k =1/s.



(e) Remark: The final value of p1 should be given in 4 significant digits. Failure to do
so results in a deduction ofz—l1 point if py = 5/3 is stated.
Remark: Calculation of py using p1 = 5/3 is incorrect, and causes a deduction of %1
point.
Remark: The final value of ps should be given in 4 significant digits. Failure to do
so results in a deduction of% point if py = 47/27 is stated.

Straightforward application of the fixed point iteration gives

b1 = Q(Po)
= g(2.000)
= 1.667,

and

P2 = g(p1)
= ¢(1.667)
— 1.741.



(a) The linear Lagrangian interpolatory polynomial, with nodes zy and xj, is
given by

Ly(z) = f(zo) +

To — 1 X1 — Xy

f(a1). (1)
This is evident from application of the given formula.

(b) The quadratic Lagrangian interpolatory polynomial with nodes zo, x; and x9

is given by
(v =) (7 — 1) .
L2($> - (:EO —$1)(9€0 _x2)f( 0) (2)
(x — zo)(x — 29)
+ (o1 — 70) (71 — ) f(x1) (3)
e T a0

This is also evident from application of the given formula.

(c¢) Obviously, Li(3) = 6 and Ly(3) = 6 since the Lagrange interpolation polynomial
satisfies L, () = f(zx) for all points zg, x1, ..., x,. Next, we compute L;(2) and
Ls(2) for both linear and quadratic Lagrangian interpolation as approximations at
x = 2. For linear interpolation, we have

2-3 . 2-1 _ 9

Ly(2) T3 3+3T1 6257 (5)

and for quadratic interpolation, one obtains

2-3)2-4) ,, _ .
(1—3)(1—4) (B-1)(3—4) 4—1)(4-3) 3

Ly(2) =



