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1. (a) The amplification factor is defined by

Q(λ∆t) =
wn+1

wn
,

where wn+1 results from applying one step of the method to the test equation y′ = λy.

First we calculate k1 and use f(t, y) = λy:

k1 = λ (wn + θ∆tk1)

⇒ k1 = λwn + θλ∆tk1

⇒ k1 − θλ∆tk1 = λwn

⇒ (1− θλ∆t) k1 = λwn

⇒ k1 =
λ

1− θλ∆t
wn

Then we calculate wn+1:

wn+1 = wn + ∆tk1

= wn +
λ∆t

1− θλ∆t
wn

=

(
1 +

λ∆t

1− θλ∆t

)
wn

=
1 + (1− θ)λ∆t

1− θλ∆t
wn

Finally division by wn gives

Q(λ∆t) =
1 + (1− θ)λ∆t

1− θλ∆t
.

(b) The local truncation error for the test equation is given by

τn+1(∆t) =
eλ∆t −Q(λ∆t)

∆t
yn., (1)

eλ∆t can be expanded by the use of Taylor expansions around ∆t = 0:

eλ∆t = 1 + λ∆t+
1

2
(λ∆t)2 +O(∆t3).

1
1− 1

2
λ∆t

can be expanded by the use of Taylor expansions around ∆t = 0:

1

1− 1
2
λ∆t

= 1 +
1

2
λ∆t+

(
1

2
λ∆t

)2

+O(∆t3)

= 1 +
1

2
λ∆t+

1

4
(λ∆t)2 +O(∆t3).
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This means the amplification factor can be rewritten to:

Q(λ∆t) =

(
1 +

1

2
λ∆t

)
1

1− 1
2
λ∆t

=

(
1 +

1

2
λ∆t

)(
1 +

1

2
λ∆t+

1

4
(λ∆t)2 +O(∆t3)

)
= 1 + λ∆t+

1

2
(λ∆t)2 +O(∆t3).

Substitution of the above in the local truncation error results in:

τn+1 =
eλ∆t −Q(λ∆t)

∆t
yn

=

(
1 + λ∆t+ 1

2
(λ∆t)2 +O(∆t3)

)
−
(
1 + λ∆t+ 1

2
(λ∆t)2 +O(∆t3)

)
∆t

yn

=
O(∆t3)

∆t
yn

= O(∆t2).

(c) For stability,
|Q(λ∆t)| ≤ 1,

must hold for all eigenvalues of the linear initial value problem, with Q the amplifi-
cation factor of the given method.

First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.

The eigenvalues of the matrix A are given by λ1 = −3 and λ2 = −1.

We first consider λ1 = −3:

Q(λ1∆t) =
1− 3

2
∆t

1 + 3
2
∆t

=
2− 3∆t

2 + 3∆t
.

Applying the stability criteria results in

−1 ≤ 2− 3∆t

2 + 3∆t
≤ 1,

and multiplying with the denominator gives

−2− 3∆t ≤ 2− 3∆t ≤ 2 + 3∆t.

First we solve the left inequality:

−2− 3∆t ≤ 2− 3∆t

⇒ −2 ≤ 2

As this inequality is always true, we obtain no new information.

Then we solve the right inequality:

2− 3∆t ≤ 2 + 3∆t

⇒ 2− 6∆t ≤ 2

⇒ −6∆t ≤ 0
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As this inequality is always true for ∆t > 0, we obtain no new information.

Repeating this for λ2 = −1 also results in no new information.

Therefor the time integration method applied to the initial value problem is stable
for

∆t > 0.

(d) First we calculate k1, where we use ∆t = 1:

k1 =

(
−2 1
1 −2

)((
1
0

)
+

1

2
k1

)
+

(
0
0

)
⇒ k1 =

(
−2 1
1 −2

)(
1
0

)
+

1

2

(
−2 1
1 −2

)
k1

⇒ k1 −
1

2

(
−2 1
1 −2

)
k1 =

(
−2 1
1 −2

)(
1
0

)
⇒

(
2 −1

2

−1
2

2

)
k1 =

(
−2
1

)
⇒ k1 =

(
2 −1

2

−1
2

2

)−1(−2
1

)
⇒ k1 =

(
−0.9333
0.2667

)
.

Then we calculate w1, again with ∆t = 1:

w1 =

(
1
0

)
+

(
−0.9333
0.2667

)
=

(
−0.0667
0.2667

)
.
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2. (a) p =
√

3 is a fixed point of the function g if g(
√

3) =
√

3. We calculate g(p):

g(p) = g(
√

3)

= −1

3
(
√

3)2 +
√

3 + 1

= −1 +
√

3 + 1

=
√

3,

So p =
√

3 is indeed a fixed-point of the function g.

(b) The function g is a polynomial and polynomials are continuous everywhere, so there
for g also is continuous on the interval [1, 2].

(c) First note that g is a parabola opening to the bottom and therefore g has a maximum
at the point where g′(x) = 0. We solve this equation:

g′(x) = 0

⇒ −2

3
x+ 1 = 0

⇒ x =
3

2
,

so the position of the maximum of g is located in the interval [1, 2] and attains the
value g(3/2) = 7/4. Therefore we conclude

g(x) ≤ 2 for x ∈ [1, 2].

The function g attains its minimum on the boundary of the interval [1, 2], so evalu-
ation of g at these points gives

g(1) = 5/3,

g(2) = 5/3.

Therefore we conclude
g(x) ≥ 1 for x ∈ [1, 2].

Putting everything together, we have found

1 ≤ g(x) ≤ 2, for x ∈ [1, 2].

as requested.

(d) The derivative of g is given by

g′(x) = −2

3
x+ 1,

which is a monotonous decreasing function. Therefore the minimum and maximum
value are located on the boundary of the interval, leading to

g′(2) ≤ g′(x) ≤ g′(1)
⇒ −1/3 ≤ g′(x) ≤ 1/3

⇒ |g′(x)| ≤ 1/3

So k = 1/3.
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(e) Remark: The final value of p1 should be given in 4 significant digits. Failure to do
so results in a deduction of 1

4
point if p1 = 5/3 is stated.

Remark: Calculation of p2 using p1 = 5/3 is incorrect, and causes a deduction of 1
4

point.
Remark: The final value of p2 should be given in 4 significant digits. Failure to do
so results in a deduction of 1

4
point if p2 = 47/27 is stated.

Straightforward application of the fixed point iteration gives

p1 = g(p0)

= g(2.000)

= 1.667,

and

p2 = g(p1)

= g(1.667)

= 1.741.
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3. (a) Using central differences for the second order derivative at a node xj = j∆x gives

y′′(xj) ≈
yj+1 − 2yj + yj−1

∆x2
=: Q(∆x). (2)

Here, yj := y(xj). Next, we will prove that this approximation is second order
accurate, that is |y′′(xj)−Q(∆x)| = O(∆x2).

Using Taylor’s Theorem around x = xj gives

yj+1 = y(xj + ∆x) = y(xj) + ∆xy′(xj) + ∆x2

2
y′′(xj) + ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η+),

yj−1 = y(xj −∆x) = y(xj)−∆xy′(xj) + ∆x2

2
y′′(xj)− ∆x3

3!
y′′′(xj) + ∆x4

4!
y′′′′(η−).

(3)
Here, η+ and η− are numbers within the intervals (xj, xj+1) and (xj−1, xj), respec-
tively. Substitution of these expressions into Q(∆x) gives

|y′′(xj)−Q(∆x)| = O(∆x2).

This leads to the following discretisation formula for internal grid nodes:

−wj−1 + 2wj − wj+1

∆x2
+ (xj + 1)wj = 1. (4)

Here, wj represents the numerical approximation of the solution yj. To deal with the
boundary x = 0, we use a virtual node at x = −∆x, and we define y−1 := y(−∆x).
Then, using central differences at x = 0 gives

0 = y′(0) ≈ y1 − y−1

2∆x
=: Qb(∆x). (5)

Using Taylor’s Theorem, gives

Qb(∆x) =

=
y(0) + ∆xy′(0) + ∆x2

2
y′′(0) + ∆x3

3!
y′′′(η+)

2∆x

−
y(0)−∆xy′(0) + ∆x2

2
y′′(0)− ∆x3

3!
y′′′(η−)

2∆x
= y′(0) +O(∆x2).

Again, we get an error of O(∆x2).

(b) With respect to the numerical approximation at the virtual node, we get

w1 − w−1

2∆x
= 0 ⇔ w−1 = w1. (6)

The discretisation at x = 0 is given by

−w−1 + 2w0 − w1

∆x2
+ w0 = 1. (7)

Substitution of equation (6) into the above equation, yields

2w0 − 2w1

∆x2
+ w0 = 1. (8)
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Subsequently, we consider the boundary x = 1. To this extent, we consider its
neighbouring point xn−1 and substitute the boundary condition wn = y(1) = yn = 1
into equation (4) to obtain

−wn−2 + 2wn−1

∆x2
+ (xn−1 + 1)wn−1 (9)

= 1 (10)

= 1 +
1

∆x2
. (11)

This concludes our discretisation of the boundary conditions. In order to get a
symmetric discretisation matrix, one divides equation (8) by 2.

Next, we use ∆x = 1/3. From equations (4, 8, 11) we obtain the following system

9
1

2
w0 − 9w1 =

1

2

−9w0 + 19
1

3
w1 − 9w2 = 1

−9w1 + 19
2

3
w2 = 10.

(c) The Gershgorin circle theorem states that the eigenvalues of a square matrix A are
located in the complex plane in the union of circles

|z − aii| ≤
n∑

j 6=i
j=1

|aij| where z ∈ C (12)

For the 3× 3 matrix derived in part (b) we have

• For i = 1: ∣∣∣∣z − 9
1

2

∣∣∣∣ ≤ 9 ⇒ |λ1|min ≥
1

2
(13)

• For i = 2: ∣∣∣∣z − 19
1

3

∣∣∣∣ ≤ 18 ⇒ |λ2|min ≥ 1
1

3
(14)

• For i = 3: ∣∣∣∣z − 19
2

3

∣∣∣∣ ≤ 9 ⇒ |λ3|min ≥ 10
2

3
(15)

Hence, a lower bound for the smallest eigenvalue is 1
2
. For a symmetric matrix A we

have

‖A−1‖ =
1

|λ|min

≤ 2 (16)

This proves that the finite-difference scheme is stable, e.g., with constant C = 2.

7


