DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING, MATHEMATICS AND COMPUTER SCIENCE

ANSWERS OF THE TEST NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS

(CTB2400)

Tuesday July 15 2025, 13:30-16:30

1. (a) The local truncation error is given by

$$\tau_{n+1}(\Delta t) = \frac{y_{n+1} - z_{n+1}}{\Delta t},\tag{1}$$

in which we determine y_{n+1} by the use of Taylor expansions around t_n :

$$y_{n+1} = y_n + \Delta t y'(t_n) + \frac{\Delta t^2}{2} y''(t_n) + \mathcal{O}(\Delta t^3).$$
 (2)

We bear in mind that

$$y'(t_n) = f(t_n, y_n)$$

$$y''(t_n) = \frac{df(t_n, y_n)}{dt} = \frac{\partial f(t_n, y_n)}{\partial t} + \frac{\partial f(t_n, y_n)}{\partial y} y'(t_n)$$
$$= \frac{\partial f(t_n, y_n)}{\partial t} + \frac{\partial f(t_n, y_n)}{\partial y} f(t_n, y_n).$$

Hence

$$y_{n+1} = y_n + \Delta t y'(t_n) + \frac{\Delta t^2}{2} \left(\frac{\partial f(t_n, y_n)}{\partial t} + \frac{\partial f(t_n, y_n)}{\partial y} f(t_n, y_n) \right) + \mathcal{O}(\Delta t^3).$$
 (3)

After substitution of the predictor $z_{n+1}^* = y_n + \Delta t f(t_n, y_n)$ into the corrector, and after using a Taylor expansion around (t_n, y_n) , we obtain for z_{n+1} :

$$z_{n+1} = y_n + \frac{\Delta t}{2} \left(f(t_n, y_n) + f(t_n + \Delta t, y_n + \Delta t f(t_n, y_n)) \right)$$

= $y_n + \frac{\Delta t}{2} \left(2f(t_n, y_n) + \Delta t \left(\frac{\partial f(t_n, y_n)}{\partial t} + f(t_n, y_n) \frac{\partial f(t_n, y_n)}{\partial y} \right) + \mathcal{O}(\Delta t^2) \right).$

Herewith, one obtains

$$y_{n+1} - z_{n+1} = \mathcal{O}(\Delta t^3)$$
, and hence $\tau_{n+1}(\Delta t) = \frac{\mathcal{O}(\Delta t^3)}{\Delta t} = \mathcal{O}(\Delta t^2)$. (4)

(b) Let $x_1 = y$ and $x_2 = y'$, then $y'' = x_2'$, and hence

$$x_2' + \frac{4}{3}x_1 + 2x_2 = \cos(t),$$

$$x_1' = x_2.$$
(5)

We write this as

$$\begin{cases} x_1' = x_2, \\ x_2' = -\frac{4}{3}x_1 - 2x_2 + \cos(t). \end{cases}$$
 (6)

Finally, this is represented in the following matrix-vector form:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}' = \begin{pmatrix} 0 & 1 \\ -\frac{4}{3} & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ \cos(t) \end{pmatrix}.$$
 (7)

In which, we have the following matrix $A = \begin{pmatrix} 0 & 1 \\ -\frac{4}{3} & -2 \end{pmatrix}$ and $\underline{f} = \begin{pmatrix} 0 \\ \cos(t) \end{pmatrix}$. The initial conditions are defined by $\begin{pmatrix} x_1(0) \\ x_2(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

(c) Note: Every miscalculation in the calculation of \underline{w}_1^* gives a subtraction of $\frac{1}{4}$ point, with at most $\frac{1}{2}$ point being subtracted.

Note: The calculation of \underline{w}_1 must be consistent with the value for \underline{w}_1^* . If not, 1 point is subtracted.

Note: Every miscalculation in the calculation of \underline{w}_1 gives a subtraction of $\frac{1}{4}$ point, with at most 1 point being subtracted.

Application of the integration method to the system $\underline{x}' = A\underline{x} + f$, gives

$$\underline{w}_{1}^{*} = \underline{w}_{0} + \Delta t \left(A \underline{w}_{0} + \underline{f}_{0} \right),
\underline{w}_{1} = \underline{w}_{0} + \frac{\Delta t}{2} \left(A \underline{w}_{0} + f_{0} + A \underline{w}_{1}^{*} + \underline{f}_{1} \right).$$
(8)

With the initial condition $\underline{w}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\Delta t = 0.1$, this gives the following result for the predictor

$$\underline{w}_1^* = \begin{pmatrix} 1\\0 \end{pmatrix} + \frac{1}{10} \begin{pmatrix} \begin{pmatrix} 0 & 1\\-\frac{4}{3} & -2 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} + \begin{pmatrix} 0\\1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1\\-\frac{1}{30} \end{pmatrix} = \begin{pmatrix} 1\\-0.033 \end{pmatrix}. \tag{9}$$

The corrector is calculated as follows

$$\underline{w}_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \frac{1}{20} \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ -\frac{4}{3} & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ -\frac{4}{3} & -2 \end{pmatrix} \begin{pmatrix} 1 \\ -\frac{1}{30} \end{pmatrix} + \begin{pmatrix} 0 \\ \cos(\frac{1}{10}) \end{pmatrix} \end{pmatrix} \\
= \begin{pmatrix} \frac{599}{600} \\ -\frac{121}{4000} \end{pmatrix} = \begin{pmatrix} 0.998 \\ -0.030 \end{pmatrix}$$

(d) Consider the test equation $y' = \lambda y$, then one gets

$$w_{n+1}^* = w_n + \Delta t \lambda w_n = (1 + \Delta t \lambda) w_n,$$

$$w_{n+1} = w_n + \frac{\Delta t}{2} (\lambda w_n + \lambda w_{n+1}^*)$$

$$= w_n + \frac{\Delta t}{2} (\lambda w_n + \lambda (w_n + \Delta t \lambda w_n))$$

$$= \left(1 + \Delta t \lambda + \frac{(\Delta t \lambda)^2}{2}\right) w_n.$$

Hence the amplification factor is given by

$$Q(\lambda \Delta t) = 1 + \lambda \Delta t + \frac{(\lambda \Delta t)^2}{2}.$$
 (10)

(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues are substituted into the amplification factor.

The eigenvalues of the matrix A are given by $\lambda_1 = -1 + 0.5774i$ and $\lambda_2 = -1 - 0.5774i$.

The method is stable if $|Q(\lambda \Delta t)| \leq 1$ for both eigenvalues. Since the eigenvalues are complex valued, it is sufficient to check this condition only for λ_1 .

Substituting λ_1 into the amplification factor leads to:

$$Q(\lambda_1 \Delta t) = 1 + (-1 + 0.5774i)\Delta t + (0.3333 - 0.5774i)(\Delta t)^2$$

Note that $|Q(\lambda_1 \Delta t)|^2 \le 1$ implies $|Q(\lambda_1 \Delta t)| \le 1$. The first inequality leads to the condition:

$$(1 - \Delta t + 0.3333(\Delta t)^2)^2 + (0.5774\Delta t - 0.5774(\Delta t)^2)^2 \le 1.$$

This is sufficient to obtain all points for this question. To find an explicit upper bound for Δt is not required. 2. (a) Because s(x) consists of polynomials, the only possible point of discontinuity is the node x = 0, so s(x) is continuous if it is continuous in x = 0.

Therefore we have to show

$$\lim_{x \to 0^{-}} s(x) = \lim_{x \to 0^{+}} s(x).$$

The left limit equals:

$$\lim_{x \to 0^{-}} s(x) = \lim_{x \to 0^{-}} -\frac{3}{4}x^{3} - \frac{9}{4}x^{2} + \frac{1}{2}x + 2$$
$$= 2.$$

The right limit equals:

$$\lim_{x \to 0^+} s(x) = \lim_{x \to 0^+} \frac{3}{4}x^3 - \frac{9}{4}x^2 + \frac{1}{2}x + 2$$

$$= 2$$

So s(x) is continuous.

The derivative s'(x) is given by

$$s'(x) = \begin{cases} -\frac{9}{4}x^2 - \frac{9}{2}x + \frac{1}{2} & \text{if } x \in [-1, 0), \\ \frac{9}{4}x^2 - \frac{9}{2}x + \frac{1}{2} & \text{if } x \in [0, 1]. \end{cases}$$

s'(x) is continuous if it is continuous in x=0, so we have to show

$$\lim_{x \to 0^{-}} s'(x) = \lim_{x \to 0^{+}} s'(x).$$

The left limit equals:

$$\lim_{x \to 0^{-}} s'(x) = \lim_{x \to 0^{-}} -\frac{9}{4}x^{2} - \frac{9}{2}x + \frac{1}{2}$$
$$= \frac{1}{2}.$$

The right limit equals:

$$\lim_{x \to 0^+} s'(x) = \lim_{x \to 0^+} \frac{9}{4}x^2 - \frac{9}{2}x + \frac{1}{2}$$
$$= \frac{1}{2}.$$

So s'(x) is continuous.

The second derivative s''(x) is given by

$$s''(x) = \begin{cases} -\frac{9}{2}x - \frac{9}{2} & \text{if } x \in [-1, 0), \\ \frac{9}{2}x - \frac{9}{2} & \text{if } x \in [0, 1]. \end{cases}$$

s''(x) is continuous if it is continuous in x=0, so we have to show

$$\lim_{x \to 0^{-}} s''(x) = \lim_{x \to 0^{+}} s''(x).$$

The left limit equals:

$$\lim_{x \to 0^{-}} s''(x) = \lim_{x \to 0^{-}} -\frac{9}{2}x - \frac{9}{2}$$
$$= -\frac{9}{2}.$$

The right limit equals:

$$\lim_{x \to 0^+} s''(x) = \lim_{x \to 0^+} \frac{9}{2}x - \frac{9}{2}$$
$$= -\frac{9}{2}.$$

So s''(x) is continuous.

(b) Evaluating s''(x) in x = -1 gives:

$$s''(-1) = -\frac{9}{2}x - \frac{9}{2}\Big|_{x=-1} = \frac{9}{2} - \frac{9}{2} = 0,$$

and evaluation at x = 1 gives

$$s''(1) = \frac{9}{2}x - \frac{9}{2}\Big|_{x=1} = \frac{9}{2} - \frac{9}{2} = 0,$$

so indeed s''(x) = 0 in the end points.

(c) The nodes of the spline are x = -1, x = 0 and x = 1.

We will evaluate s(x) in these three nodes and show that it is equal to f(x) in these nodes:

$$s(-1) = -\frac{3}{4}x^3 - \frac{9}{4}x^2 + \frac{1}{2}x + 2\Big|_{x=-1}$$

$$= -\frac{3}{4}(-1)^3 - \frac{9}{4}(-1)^2 + \frac{1}{2}(-1) + 2$$

$$= \frac{3}{4} - \frac{9}{4} - \frac{1}{2} + 2$$

$$= 0$$

$$= f(-1),$$

$$s(0) = \frac{3}{4}x^3 - \frac{9}{4}x^2 + \frac{1}{2}x + 2\Big|_{x=0}$$

$$= \frac{3}{4}(0)^3 - \frac{9}{4}(0)^2 + \frac{1}{2}(0) + 2$$

$$= 0 - 0 + 0 + 2$$

$$= 2$$

$$= f(0),$$

$$s(1) = \frac{3}{4}x^3 - \frac{9}{4}x^2 + \frac{1}{2}x + 2\Big|_{x=1}$$

$$= \frac{3}{4}(1)^3 - \frac{9}{4}(1)^2 + \frac{1}{2}(1) + 2$$

$$= \frac{3}{4} - \frac{9}{4} + \frac{1}{2} + 2$$

$$= 1$$

$$= f(1).$$

(d) $x = -\frac{1}{2}$ lies in the left interval, so we need to perform the next calculation:

$$\begin{split} f\left(-\frac{1}{2}\right) &\approx s\left(-\frac{1}{2}\right) \\ &= -\frac{3}{4}x^3 - \frac{9}{4}x^2 + \frac{1}{2}x + 2\Big|_{x=-\frac{1}{2}} \\ &= -\frac{3}{4}\left(-\frac{1}{2}\right)^3 - \frac{9}{4}\left(-\frac{1}{2}\right)^2 + \frac{1}{2}\left(-\frac{1}{2}\right) + 2 \\ &= \frac{41}{32} = 1.2812. \end{split}$$

3. (a) Newton-Raphson's Method is an iterative method to find $p \in \mathbb{R}$ such that f(p) = 0. One constructs a sequence of successive approximations $\{p_n\}$. Given the n-th estimate, then p_{n+1} is obtained through linearizing around p_n and by finding p_{n+1} by determining the point where the linearization (tangent) equals zero. Linearization of f(p) around p_n gives (upon neglecting the error)

$$f(p) \approx f(p_n) + f'(p_n)(p - p_n) =: L(p; p_n),$$
 (11)

for any p provided the second derivative of f(p) is bounded and where $L(p; p_n)$ denotes the tangent (linearization) of f(p) at point $(p_n, f(p_n))$. Then the next point is found upon setting $L(p_{n+1}; p_n) = 0$:

$$f(p_n) + f'(p_n)(p_{n+1} - p_n) = 0. (12)$$

The above equation is solved for p_{n+1} , and gives

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n)},\tag{13}$$

which is the famous Newton–Raphson formula for root–finding. For the graphical derivation, see Figure 4.2 in the book.

(b) The Jacobian matrix of f(x) is defined by

$$\mathbf{J}(\mathbf{x}) = egin{pmatrix} rac{\partial f_1}{\partial x_1}(\mathbf{x}) & \dots & rac{\partial f_1}{\partial x_m}(\mathbf{x}) \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1}(\mathbf{x}) & \dots & rac{\partial f_m}{\partial x_m}(\mathbf{x}) \end{pmatrix}.$$

The definition of the Newton–Raphson method is

$$\mathbf{p}^{(n)} = \mathbf{p}^{(n-1)} - \mathbf{J}^{-1}(\mathbf{p}^{(n-1)})\mathbf{f}(\mathbf{p}^{(n-1)}). \tag{14}$$

(c) First, we rewrite the system into the form

$$f_1(p_1, p_2) = 0, f_2(p_1, p_2) = 0,$$
(15)

by setting

$$f_1(p_1, p_2) := 2p_1 - p_2 + p_1 p_2, f_2(p_1, p_2) := -1p_1 + 2p_2 + (p_2)^3 - 1.$$
(16)

We denote the Jacobian matrix by $\mathbf{J}(p_1, p_2)$. Note that

$$\mathbf{J}(\mathbf{p}) = \begin{pmatrix} 2 + p_2^{(0)} & -1 + p_1^{(0)} \\ -1 & 2 + 3(p_2^{(0)})^2 \end{pmatrix}. \tag{17}$$

Using $p_1^{(0)} = p_2^{(0)} = 0$ we obtain:

$$\mathbf{J}(\mathbf{p}^{(0)}) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}. \tag{18}$$

This implies that

$$\mathbf{J}(\mathbf{p}^{(0)})^{-1} = \frac{1}{2^2 - 1} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}. \tag{19}$$

Furthermore

$$\mathbf{f}(\mathbf{p}^{(0)}) = \begin{pmatrix} 0 \\ -1 \end{pmatrix},\tag{20}$$

SO

$$\mathbf{p}^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \frac{1}{2^2 - 1} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} \\ -\frac{2}{3} \end{pmatrix}. \tag{21}$$