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1. (a)

EQUATIONS
( CTB2400 )
Tuesday July 15 2025, 13:30-16:30

The local truncation error is given by

T (Af) = HELZL 1)

in which we determine y,,1 by the use of Taylor expansions around t,:
/ AtQ " 3

We bear in mind that

y/(tn) = f(tn, Yn)
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After substitution of the predictor z,, = y, + Atf(t,,yn) into the corrector, and
after using a Taylor expansion around (t,,y,), we obtain for z,1:

A
Zntl = Yn + = (f(tnsyn) + f(tn + Aty + At f(tn, yn)))

2
At Of (tn, Yn) Of (tn, Yn) 9
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Herewith, one obtains
O(AP?
Yni1 — Zny1 = O(At?), and hence 7,1 (At) = (At ) = O(A). (4)
Let 1 = y and x9 = ¢/, then ¢y’ = x,, and hence
x% + 31 + 225 = cos(t), (5)
Ty = Ta.
We write this as /
€Ty = o, (6)
th = —3x — 229 + cos(t).



Finally, this is represented in the following matrix-vector form:
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In which, we have the following matrix A =

initial conditions are defined by <£158;) = (é)
2

with at most /2 point being subtracted.
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Note: FEvery miscalculation in the calculation of wi gives a subtraction of 1/4 point,

Note: The calculation of wy, must be consistent with the value for wi. If not, 1 point

1s subtracted.

Note: Every miscalculation in the calculation of w, gives a subtraction of 1/4 point,

with at most 1 point being subtracted.

Application of the integration method to the system z' = Az + f, gives
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With the initial condition w, = <(1)

for the predictor
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The corrector is calculated as follows
1 1
wy = 0 + 2—0
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(d) Consider the test equation y’" = Ay, then one gets
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> and At = 0.1, this gives the following result
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wy = Wy + Atdw, = (1 + AtA)wy,
t
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Hence the amplification factor is given by
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(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues

are substituted into the amplification factor.
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The eigenvalues of the matrix A are given by \y = —1 4 0.57747 and Ay = —1 —
0.57744.

The method is stable if |Q(AA?)| < 1 for both eigenvalues. Since the eigenvalues are
complex valued, it is sufficient to check this condition only for ;.

Substituting A; into the amplification factor leads to:
Q(MAL) =1+ (=14 0.5774i) At + (0.3333 — 0.57744) (At)?

Note that [Q(A1A?)[* < 1 implies |Q(AAt)] < 1. The first inequality leads to the
condition:

(1 — At +0.3333(At)*)? + (0.5774At — 0.5774(At)?*)? < 1.

This is sufficient to obtain all points for this question. To find an explicit upperbound
for At is not required.



2.

(a) Because s(z) consists of polynomials, the only possible point of discontinuity is the

node x = 0, so s(x) is continuous if it is continuous in z = 0.

Therefore we have to show

li = li .
g o) = lig, o)

The left limit equals:

3 9 1
1i = lim —=2® — 2%+ -2 +2
Jim o) =l —a® = a4 g
The right limit equals:
3 9 1
li = lim ~2° — 2% 4+ 2 + 2
) = g g
=2.
So s(x) is continuous.
The derivative s'(x) is given by
9 9
—1x2—§x+§ if ze€ [—170),
s'(x) =
9 9
ZZE2—§$+§ lf T &€ [0,1]

s'(z) is continuous if it is continuous in x = 0, so we have to show

lim §'(z) = lim $'(z).

z—0~ z—0t
The left limit equals:
9 1
1 = lim — 2% — = =
Jdim o) = i gt 5
1
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The right limit equals:
9 9 1
lim s'(z) = lim ~a? — = =
= g 5t
1
2

So §'(x) is continuous.

The second derivative s”(z) is given by

—gx—g if xe[-1,0),

gx—g if zel0,1].

s"(x) is continuous if it is continuous in x = 0, so we have to show

1- 2 — 1 iz .
g = 1 )



The left limit equals:

9 9
lim §"(z) = lim —-z — =
r—0~ z—0~ 2 2
9
2
The right limit equals:
9 9
lim s"(z) = lim -z — =
z—07F z—0+ 2 2
9
=5
So §”(x) is continuous.
Evaluating s”(z) in 2 = —1 gives:
9 9 9 9
" —1 = —— —_ = = - — — =
sEl==32-5|  =37370
and evaluation at x = 1 gives
9 9 9 9
" ]_ = — —_ = = - — - =
sM=gv-3] =37370
so indeed s”(x) = 0 in the end points.
The nodes of the spline are z = —1, x =0 and = = 1.
We will evaluate s(x) in these three nodes and show that it is equal to f(z) in these
nodes:
3 9 1
s(—1) = —Zm3 — Zx2 +or+2 .
3 9 1
= (1) = (=1 4+ =(—1) + 2
O T =
3 9
— 27 p
4 4 2 *
0
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2
= f(0),
3 9 1
s(1) = ng - Zx2 + 3% +2 .
3 9 1
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S s+
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4402
=1
= f(1).






3.

(a)

Newton—-Raphson’s Method is an iterative method to find p € R such that f(p) =
0. One constructs a sequence of successive approximations {p,}. Given the n—th
estimate, then p,,, is obtained through linearizing around p,, and by finding p, 1 by
determining the point where the linearization (tangent) equals zero. Linearization
of f(p) around p, gives (upon neglecting the error)

f(p) = f(pn) + f'(0n)(p — Pn) =2 L(p; ), (11)

for any p provided the second derivative of f(p) is bounded and where L(p;p,)
denotes the tangent (linearization) of f(p) at point (p,, f(pn)). Then the next point
is found upon setting L(p,11;pn) = 0:

f(@n) + 1 (Pn) Pri1 — pn) = 0. (12)
The above equation is solved for p, 1, and gives

Pn+1 = Pn — )
! f'(pn)
which is the famous Newton—Raphson formula for root—finding. For the graphical

derivation, see Figure 4.2 in the book.
The Jacobian matrix of f(x) is defined by

g—cﬁ(x) o %(X)
J(x) = : SR
%fTT(X) o %:(X)
The definition of the Newton—-Raphson method is:
p(") = p(rb) — 371 (plrD)f(p(D), (14)
First, we rewrite the system into the form
fi(p1,p2) =0,
15
f2(p17p2) :Oa ( )
by setting
fi(p1,p2) == 2p1 — p2 + pipo, (16)

fa(pr,p2) == —1p1 + 2p2 + (p2)* — L.
We denote the Jacobian matrix by J(p1, p2). Note that

(0) (0)
24 p, 1+p
J(p) = . 17
(p) ( 1 9 3(p§0))2 (17)
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=

Using p py’ = 0 we obtain:

This implies that

Furthermore
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