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1. (a) The local truncation error is given by

τn+1(∆t) =
yn+1 − zn+1

∆t
, (1)

in which we determine yn+1 by the use of Taylor expansions around tn:

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +O(∆t3). (2)

We bear in mind that

y′(tn) = f(tn, yn)

y′′(tn) =
df(tn, yn)

dt
=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
y′(tn)

=
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn).

Hence

yn+1 = yn + ∆ty′(tn) +
∆t2

2

(
∂f(tn, yn)

∂t
+
∂f(tn, yn)

∂y
f(tn, yn)

)
+O(∆t3). (3)

After substitution of the predictor z∗n+1 = yn + ∆tf(tn, yn) into the corrector, and
after using a Taylor expansion around (tn, yn), we obtain for zn+1:

zn+1 = yn +
∆t

2
(f(tn, yn) + f(tn + ∆t, yn + ∆tf(tn, yn)))

= yn +
∆t

2

(
2f(tn, yn) + ∆t

(
∂f(tn, yn)

∂t
+ f(tn, yn)

∂f(tn, yn)

∂y

)
+O(∆t2)

)
.

Herewith, one obtains

yn+1 − zn+1 = O(∆t3), and hence τn+1(∆t) =
O(∆t3)

∆t
= O(∆t2). (4)

(b) Let x1 = y and x2 = y′, then y′′ = x′2, and hence

x′2 + 4
3
x1 + 2x2 = cos(t),

x′1 = x2.
(5)

We write this as {
x′1 = x2,
x′2 = −4

3
x1 − 2x2 + cos(t).

(6)
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Finally, this is represented in the following matrix-vector form:(
x1

x2

)′
=

(
0 1
−4

3
−2

)(
x1

x2

)
+

(
0

cos(t)

)
. (7)

In which, we have the following matrix A =

(
0 1
−4

3
−2

)
and f =

(
0

cos(t)

)
. The

initial conditions are defined by

(
x1(0)
x2(0)

)
=

(
1
0

)
.

(c) Note: Every miscalculation in the calculation of w∗1 gives a subtraction of 1/4 point,
with at most 1/2 point being subtracted.

Note: The calculation of w1 must be consistent with the value for w∗1. If not, 1 point
is subtracted.

Note: Every miscalculation in the calculation of w1 gives a subtraction of 1/4 point,
with at most 1 point being subtracted.

Application of the integration method to the system x′ = Ax+ f , gives

w∗1 = w0 + ∆t
(
Aw0 + f

0

)
,

w1 = w0 + ∆t
2

(
Aw0 + f0 + Aw∗1 + f

1

)
.

(8)

With the initial condition w0 =

(
1
0

)
and ∆t = 0.1, this gives the following result

for the predictor

w∗1 =

(
1
0

)
+

1

10

((
0 1
−4

3
−2

)(
1
0

)
+

(
0
1

))
=

(
1
− 1

30

)
=

(
1

−0.033

)
. (9)

The corrector is calculated as follows

w1 =

(
1
0

)
+

1

20

((
0 1
−4

3
−2

)(
1
0

)
+

(
0
1

)
+

(
0 1
−4

3
−2

)(
1
− 1

30

)
+

(
0

cos( 1
10

)

))
=

(
599
600

− 121
4000

)
=

(
0.998
−0.030

)
(d) Consider the test equation y′ = λy, then one gets

w∗n+1 = wn + ∆tλwn = (1 + ∆tλ)wn,

wn+1 = wn +
∆t

2
(λwn + λw∗n+1)

= wn +
∆t

2
(λwn + λ(wn + ∆tλwn))

=

(
1 + ∆tλ+

(∆tλ)2

2

)
wn.

Hence the amplification factor is given by

Q(λ∆t) = 1 + λ∆t+
(λ∆t)2

2
. (10)

(e) First, we determine the eigenvalues of the matrix A. Subsequently, the eigenvalues
are substituted into the amplification factor.
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The eigenvalues of the matrix A are given by λ1 = −1 + 0.5774i and λ2 = −1 −
0.5774i.

The method is stable if |Q(λ∆t)| ≤ 1 for both eigenvalues. Since the eigenvalues are
complex valued, it is sufficient to check this condition only for λ1.

Substituting λ1 into the amplification factor leads to:

Q(λ1∆t) = 1 + (−1 + 0.5774i)∆t+ (0.3333− 0.5774i)(∆t)2

Note that |Q(λ1∆t)|2 ≤ 1 implies |Q(λ1∆t)| ≤ 1. The first inequality leads to the
condition:

(1−∆t+ 0.3333(∆t)2)2 + (0.5774∆t− 0.5774(∆t)2)2 ≤ 1.

This is sufficient to obtain all points for this question. To find an explicit upperbound
for ∆t is not required.
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2. (a) Because s(x) consists of polynomials, the only possible point of discontinuity is the
node x = 0, so s(x) is continuous if it is continuous in x = 0.

Therefore we have to show

lim
x→0−

s(x) = lim
x→0+

s(x).

The left limit equals:

lim
x→0−

s(x) = lim
x→0−

−3

4
x3 − 9

4
x2 +

1

2
x+ 2

= 2.

The right limit equals:

lim
x→0+

s(x) = lim
x→0+

3

4
x3 − 9

4
x2 +

1

2
x+ 2

= 2.

So s(x) is continuous.

The derivative s′(x) is given by

s′(x) =


−9

4
x2 − 9

2
x+

1

2
if x ∈ [−1, 0),

9

4
x2 − 9

2
x+

1

2
if x ∈ [0, 1].

s′(x) is continuous if it is continuous in x = 0, so we have to show

lim
x→0−

s′(x) = lim
x→0+

s′(x).

The left limit equals:

lim
x→0−

s′(x) = lim
x→0−

−9

4
x2 − 9

2
x+

1

2

=
1

2
.

The right limit equals:

lim
x→0+

s′(x) = lim
x→0+

9

4
x2 − 9

2
x+

1

2

=
1

2
.

So s′(x) is continuous.

The second derivative s′′(x) is given by

s′′(x) =


−9

2
x− 9

2
if x ∈ [−1, 0),

9

2
x− 9

2
if x ∈ [0, 1].

s′′(x) is continuous if it is continuous in x = 0, so we have to show

lim
x→0−

s′′(x) = lim
x→0+

s′′(x).
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The left limit equals:

lim
x→0−

s′′(x) = lim
x→0−

−9

2
x− 9

2

= −9

2
.

The right limit equals:

lim
x→0+

s′′(x) = lim
x→0+

9

2
x− 9

2

= −9

2
.

So s′′(x) is continuous.

(b) Evaluating s′′(x) in x = −1 gives:

s′′(−1) = −9

2
x− 9

2

∣∣∣∣
x=−1

=
9

2
− 9

2
= 0,

and evaluation at x = 1 gives

s′′(1) =
9

2
x− 9

2

∣∣∣∣
x=1

=
9

2
− 9

2
= 0,

so indeed s′′(x) = 0 in the end points.

(c) The nodes of the spline are x = −1, x = 0 and x = 1.

We will evaluate s(x) in these three nodes and show that it is equal to f(x) in these
nodes:

s(−1) = −3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=−1

= −3

4
(−1)3 − 9

4
(−1)2 +

1

2
(−1) + 2

=
3

4
− 9

4
− 1

2
+ 2

= 0

= f(−1),

s(0) =
3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=0

=
3

4
(0)3 − 9

4
(0)2 +

1

2
(0) + 2

= 0− 0 + 0 + 2

= 2

= f(0),

s(1) =
3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=1

=
3

4
(1)3 − 9

4
(1)2 +

1

2
(1) + 2

=
3

4
− 9

4
+

1

2
+ 2

= 1

= f(1).
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(d) x = −1
2

lies in the left interval, so we need to perform the next calculation:

f

(
−1

2

)
≈ s

(
−1

2

)
= −3

4
x3 − 9

4
x2 +

1

2
x+ 2

∣∣∣∣
x=− 1

2

= −3

4

(
−1

2

)3

− 9

4

(
−1

2

)2

+
1

2

(
−1

2

)
+ 2

=
41

32
= 1.2812.
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3. (a) Newton–Raphson’s Method is an iterative method to find p ∈ R such that f(p) =
0. One constructs a sequence of successive approximations {pn}. Given the n–th
estimate, then pn+1 is obtained through linearizing around pn and by finding pn+1 by
determining the point where the linearization (tangent) equals zero. Linearization
of f(p) around pn gives (upon neglecting the error)

f(p) ≈ f(pn) + f ′(pn)(p− pn) =: L(p; pn), (11)

for any p provided the second derivative of f(p) is bounded and where L(p; pn)
denotes the tangent (linearization) of f(p) at point (pn, f(pn)). Then the next point
is found upon setting L(pn+1; pn) = 0:

f(pn) + f ′(pn)(pn+1 − pn) = 0. (12)

The above equation is solved for pn+1, and gives

pn+1 = pn −
f(pn)

f ′(pn)
, (13)

which is the famous Newton–Raphson formula for root–finding. For the graphical
derivation, see Figure 4.2 in the book.

(b) The Jacobian matrix of f(x) is defined by

J(x) =


∂f1
∂x1

(x) . . . ∂f1
∂xm

(x)
...

. . .
...

∂fm
∂x1

(x) . . . ∂fm
∂xm

(x)

 .

The definition of the Newton–Raphson method is:

p(n) = p(n−1) − J−1(p(n−1))f(p(n−1)). (14)

(c) First, we rewrite the system into the form

f1(p1, p2) = 0,
f2(p1, p2) = 0,

(15)

by setting
f1(p1, p2) := 2p1 − p2 + p1p2,
f2(p1, p2) := −1p1 + 2p2 + (p2)3 − 1.

(16)

We denote the Jacobian matrix by J(p1, p2). Note that

J(p) =

(
2 + p

(0)
2 −1 + p

(0)
1

−1 2 + 3(p
(0)
2 )2

)
. (17)

Using p
(0)
1 = p

(0)
2 = 0 we obtain:

J(p(0)) =

(
2 −1
−1 2

)
. (18)

This implies that

J(p(0))−1 =
1

22 − 1

(
2 1
1 2

)
. (19)

Furthermore

f(p(0)) =

(
0
−1

)
, (20)

so

p(1) =

(
0
0

)
− 1

22 − 1

(
2 1
1 2

)(
0
−1

)
=

(
−1

3

−2
3

)
. (21)
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