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Chapter 1

Supplement of Chapter 5

In Chapter 5.10 and 5.11 of the book Numerical Analysis of Burden and Faires, some results
are given concerning stability of numerical methods. In this supplement these results are
summarized and additional material concerning stability is given.

Stability

A general definition of stability is: small changes or perturbations in the initial conditions
produce correspondingly small changes in the subsequent approximations. Phenomena which
have unstable behavior are: buckling of a column under compression and resonance of a bridge
due to wind forces. In this supplement we only consider stable applications.

1.1 Stability of initial-value problems

Suppose that the initial condition y0 is perturbed with ε0. The perturbed solution ỹ satisfies:

ỹ′ = f(t, ỹ) with ỹ(0) = y0 + ε0.

The difference of the exact and perturbed solution is defined as ε: ε(t) = ỹ(t) − y(t). An
initial-value problem is stable if

|ε(t)| is bounded for all t > 0.

If |ε(t)| is not bounded for all t, we call the initial-value problem unstable. An initial-value
problem is absolutely stable if

lim
t→∞

|ε(t)| = 0.

Stability of a linear initial-value problem

Consider the linear initial-value problem

y′ = λy + g with y(0) = y0. (1.1)

It is easily seen that ε satisfies the test equation :

ε′ = λε with ε(0) = ε0. (1.2)

The solution ε of (1.2) is given by ε(t) = ε0e
λt. This implies that a linear initial-value problem

is stable if and only if λ ≤ 0.
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Stability of a one-step difference method

Consider two numerical solutions of (1.1): wj with initial condition w0 = y0 and vj with
initial condition v0 = y0 + ε0. The difference method is stable if

|εj | is bounded for all j

and absolutely stable if
lim

j→∞
|εj | = 0 .

It appears that εj = vj − wj is the numerical solution of the test equation. It is easy to see
that every one-step method applied to the test equation gives

εj+1 = Q(hλ)εj , (1.3)

where Q(hλ), the amplification factor, depends on the numerical method: for Forward Euler
Q(h) = 1 + hλ and for the Modified Euler method Q(h) = 1 + hλ+ 1

2(hλ)2. By induction it
follows that εj = [Q(hλ)]jε0. So a numerical method is stable if and only if

|Q(hλ)| ≤ 1 . (1.4)

For the Forward Euler method we have Q(h) = 1 + hλ. Suppose that λ ≤ 0 then the
differential equation is stable. Inequality (1.4) can be written as:

−1 ≤ 1 + hλ ≤ 1 ,

which is equivalent to
−2 ≤ hλ ≤ 0 .

Since h > 0 and λ ≤ 0 it follows that h ≤ 2
|λ| .

For Backward Euler the amplification factor is given by Q(h) = 1
1−hλ

. So for stability h
should be such that:

−1 ≤ 1

1 − hλ
≤ 1 .

It is easy to see that these inequalities hold for all h ≥ 0 because λ ≤ 0. This implies that
the Backward Euler method is always stable as long as λ ≤ 0.

Example (linear problem)
Consider the initial-value problem:

y
′

= −10y , t ∈ [0, 1] ,
y(0) = 1 .

The exact solution is given by y(t) = e−10t. From the theory it follows that Forward Euler is
stable if h ≤ 0.2. In Figure 1.1 the perturbations are plotted for the step sizes h = 1

3 ,
1
6 and

1
12 with ε0 = 10−4. The method is indeed unstable if h = 1

3 because |εj | > |εj−1|. For the
other values of h we see that the perturbations decrease.
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Figure 1.1: Forward Euler applied to y
′

= −10y

Stability of a nonlinear initial-value problem

For a general initial-value problem we investigate the stability properties for the linearized
problem. So the initial-value problem

y
′

= f(t, y) and y(0) = y0 , (1.5)

is linearized by using the linear approximation around (t0, y0):

f(t, y) ≈ f(t0, y0) + (y − y0)
∂f

∂y
(t0, y0) + (t− t0)

∂f

∂t
(t0, y0) .

If (t, y) is close to (t0, y0) equation (1.5) can be approximated by

y
′

= f(t0, y0) + (y − y0)
∂f

∂y
(t0, y0) + (t− t0)

∂f

∂t
(t0, y0) .

Comparison with the linear equation shows that in this case λ = ∂f
∂y

(t0, y0). Note that the
stability condition depends on the values of y0 and t0.

Example (nonlinear problem)
A simple model of a transient channel flow is given by

y′ = −ay2 + p, y(0) = 0.

In this example f(t, y) = −ay2 + p. After linearization one obtains

λ =
∂f

∂t
(t0, y0) = −2ay0.
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This implies that the initial-value problem is stable for all positive a and y0. The Forward
Euler method is stable if

h ≤ 1

ay0
.

Note that the bound on the step size decreases if y0 increases.

Theorem 1.1.1 If the numerical method is stable and consistent then the numerical solution
converges to the exact solution for h→ 0. Furthermore the global error yi − wi and the local
truncation error τi(h) have the same rate of convergence.

Proof

We only prove the theorem for the test equation y
′

= λy. The following recurrence holds for
the global error yj − wj :

yj − wj = yj −Q(hλ)wj−1

= yj −Q(hλ)yj−1 +Q(hλ)(yj−1 − wj−1)

= hτj +Q(hλ)(yj−1 − wj−1) . (1.6)

Repeating this argument one obtains

yj − wj =

j−1
∑

l=0

[Q(hλ)]lhτj−l .

From the stability follows

|yj − wj | ≤
j−1
∑

l=0

|Q(hλ)|lh|τj−l| ≤
j−1
∑

l=0

h|τj−l| ≤ max
1≤l≤j−1

|τl| ,

where we used that jh ≤ 1. This implies that the rate of convergence of the global error is
identical to that of the local truncation error. Furthermore the global error goes to zero if
h→ 0 because the method is consistent. �

1.2 Stability of a system of first order differential equations

First we consider the stability of a system of first order differential equations. Thereafter the
stability of a numerical method applied to a system is investigated.

Stability of a linear system of first order differential equations

An m-th order linear system of first order differential equations has the form

dy1

dt
= a11y1 + . . .+ a1mym + g1 ,

...
...

... (1.7)

dym

dt
= am1y1 + . . .+ ammym + gm ,

where aij are real numbers and g1, . . . , gm are real valued functions of t. This system is also
notated as

y′ = Ay + g with y(0) = y0. (1.8)
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Suppose there are two solutions: y with initial condition y(0) = y0 and ỹ with the perturbed
condition ỹ(0) = y0 + ε0. The vector function ε = ỹ − y satisfies:

ε′ = Aε with ε(0) = ε0, (1.9)

which is a system of coupled linear differential equations. Hence the equations in the system
must be solved simultaneously. In contrast, if each equation involves only a single variable
then each equation can be solved independently of all the others which is much easier. This
observation suggests to transform the system of equations into an equivalent uncoupled sys-
tem. We assume that the matrix A is diagonalizable. This means that there is a nonsingular
matrix S such that

AS = SΛ,

where Λ = diag(λ1 . . . λm) contains the eigenvalues of A and the columns of S are the corre-
sponding eigenvectors of A. If A has a complex eigenpair (λ,v) then the complex conjugate
(λ̄, v̄) is also an eigenpair of A.

Define a new dependent variable η by the relation ε = Sη. Using this, expression (1.9) can
be written as

η′ = Λη with η(0) = η0. (1.10)

System (1.10) is uncoupled and easy to solve:

η(t) = eΛtη0,

where eΛt is a diagonal matrix with diagonal elements eλ1t, . . . eλmt. So finally the solution of
(1.9) is given by

ε = SeΛtS−1ε0.

In the case that all eigenvalues are real (1.9) is a stable system if λk ≤ 0 for k = 1, . . . ,m.
If λk is complex-valued the solution ηk can be written as an oscillating real function with
amplitude equal to eReλkt. So in the general case (λk ∈ C) system (1.9) is stable if Reλk ≤ 0
for k = 1, . . . ,m.

Stability of a numerical method

We consider the numerical solution of the system of linear differential equations

y′ = Ay with y(0) = y0. (1.11)

The numerical solution u can be written as:

uj+1 = G(hA)uj with u0 = y0.

The m ×m matrix G(hA) is known as the amplification matrix. The following expressions
are easy to verify.

Forward Euler G(hA) = I + hA ,

Backward Euler G(hA) = (I − hA)−1 ,

Implicit Trapezoidal G(hA) = (I − 1
2hA)−1(I + 1

2hA) ,

Modified Euler G(hA) = I + hA+ 1
2h

2A2 .
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Theorem 1.2.1 If A is a diagonalizable m ×m matrix and S (matrix of eigenvectors) is a
nonsingular matrix such that

S−1AS = diag(λ1, . . . , λm),

the amplification matrix G(hA) of a numerical method has the following properties: G(hA)
is diagonalizable and S−1G(hA)S = M , where M = diag(Q(hλ1), . . . , Q(hλm)) and Q(hλ) is
the amplification factor of the numerical method.

Proof

Using the related definitions the results easily follows. �

To investigate the stability of a numerical method applied to (1.8) we consider the numerical
solution of

ε′ = Aε with ε(0) = ε0, (1.12)

Using the amplification matrix it follows that εj+1 = G(hA)εj . The numerical method is
only stable if ‖εj‖ is bounded for all j. Using the substitution εj = Sηj we obtain

ηj+1 = Mηj .

So it appears that the numerical method is stable if the inequalities

|Q(hλk)| ≤ 1 hold for all 1 ≤ k ≤ m.

Region of stability

In the case that A has complex eigenvalues we define the region of stability R for a numerical
method:

R = {z ∈ C | |Q(z)| ≤ 1}.
So R is the set of all points z in the complex plane such that the modulus of Q(z) is less than
or equal to 1. This implies that a numerical method is stable when hλi ∈ R, for i = 1, . . . ,m.

The regions of stability of some explicit methods are given in Figure 1.2 and for implicit
methods in Figure 1.3. A region of stability can be used in the following way. Suppose λk

is an eigenvalue of A. Then the step size h should be chosen such that hλk ∈ R for all
k. Note that the regions of stability for the explicit methods given in Figure 1.2 do not
include the imaginary axis.This implies that these methods cannot be used for systems with
an imaginary eigenvalue (λk ∈ I for some k) which implies that the solution contains an
undamped oscillation. In Figure 1.4 we give the region R for the fourth order Runge Kutta
method. Since part of the imaginary axis is contained in R the explicit Runge Kutta method
is conditionally stable for undamped oscillations.
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Figure 1.2: Regions of stability of explicit methods

Backward Euler
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Figure 1.3: Regions of stability of implicit methods
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Runge−Kutta order four
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Figure 1.4: Regions of stability of the Runge Kutta method

Stability of a nonlinear system

A nonlinear system

dy1

dt
= f1(t, y1, . . . , ym) ,

...
...

... (1.13)

dym

dt
= fm(t, y1, . . . , ym) ,

has locally the same properties as a linear system (1.8), where the matrix A is replaced by
the Jacobian matrix







∂f1

∂y1
. . . ∂f1

∂ym

...
...

∂fm

∂y1
. . . ∂fm

∂ym






.

Example
We consider the stability of the undamped oscillating pendulum. The angle ψ satisfies the
nonlinear differential equation:

ψ
′′

+ sinψ = 0 , ψ(0) = ψ0 and ψ
′

(0) = 0 .

This equation can be transformed to a system of first order equations:

y
′

1 = y2 = f1(t, y1, y2) ,

y
′

2 = − sin y1= f2(t, y1, y2) .
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The Jacobian matrix is given by
[

0 1
− cos y1 0

]

.

Assuming that −π
2 < ψ0 <

π
2 the eigenvalues are

λ1,2 = ±i√cos y1 .

The differential equation is stable since Reλ1,2 = 0. Note that Forward Euler and Modi-
fied Euler are unstable for all step sizes h. Backward Euler, Implicit Trapezoidal and the
fourth order Runge Kutta method are stable. It appears that the solution obtained with the
Backward Euler method shows unphysical damping.

1.3 Stiff systems of differential equations

In this section we only consider systems of the form:

y
′

= Ay , (1.14)

where the eigenvalues of A are real and negative. The eigenvalues are ordered in the following
way

λm ≤ λm−1.... ≤ λ1 < 0 .

Stiff systems of differential equations

System (1.14) is called stiff if
|λm|
|λ1|

� 1 .

The solution of (1.14) is given by y =
m
∑

k=1

cke
λktvk, where vk is the eigenvector corresponding

to λk. Note that the components of y with respect to the basis {v1, . . .vm}, corresponding
to strong negative eigenvalues rapidly decay to zero. These components are only important
for small times. In many applications one is not interested in the transient but in the long
time behavior of the solution.

Explicit methods

Explicit methods are conditionally stable, so the step size h should be chosen sufficiently
small. We consider the Forward Euler method. This method is only stable if

h ≤ 2

|λm| .

However the accuracy for the long time behavior is strongly influenced by the eigenvalues close
to zero, which implies that h can be chosen relatively large. So for stiff systems of differential
equations the stability requirements for explicit methods leads to unpractical small values of
the step size h.

Implicit methods

Most implicit methods are unconditionally stable if Reλk ≤ 0. Using such a method the step
size h can be controlled by the required accuracy. This implies that for moderate values of h
there may be a large error for small times, whereas the accuracy is high at medium and large
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times, due to the damping of the initial errors.

We compare the Backward Euler and the Implicit Trapezoidal method with respect to the
transient components. The amplification factors of both methods are given in Figure 1.5.
There is an important difference in the value of the amplification factors for hλ→ −∞.

−10−20−30−40−50 0

1

−1

h λ

Backward Euler      
Implicit Trapezoidal

Figure 1.5: Amplification factors of the Backward Euler and the Implicit Trapezoidal method

Super-stable

A numerical method is called super-stable if

lim
hλ→−∞

|Q(hλ)| < 1 .

From Figure 1.5 we conclude that Backward Euler is super-stable, whereas the Implicit Trape-
zoidal method is not super-stable because

lim
hλ→−∞

|Q(hλ)| = 1 .

This means that perturbations in the initial conditions of the transient components are very
slowly damped if the Implicit Trapezoidal method is used.
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Chapter 2

Supplement of Chapter 11

In Chapter 11.3 of the book Numerical Analysis of Burden and Faires, the finite difference
method for linear boundary value problems is presented. In this supplement additional ma-
terial concerning conditioning, convergence and other boundary conditions are given.

2.1 Summary of relevant linear algebra subjects

In this section we summarize a number of linear algebra subjects relevant for the solution of
boundary value problems by the finite difference method. Most of these subjects are given in
the book of Burden and Faires, but they are somewhat scattered in the text.

Condition of a linear system

The scaled Eulerian norm of the vector x is defined as (compare Definition 7.2, p. 419):

‖x‖ =

√

√

√

√

1

N

N
∑

j=1

x2
j .

The natural, or induced, matrix norm associated with the vectornorm ‖.‖ is defined as (The-
orem 7.9, p. 425):

‖A‖ = max
‖x‖=1

‖Ax‖.

The following inequality is often used (Corollary 7.10, p. 425):

‖Ax‖ ≤ ‖A‖ ‖x‖.

Suppose vector x is the solution of the linear system Ax = b. Furthermore the right-hand
side vector b is perturbed with the vector ∆b. As a result of this the solution vector also
contains an error ∆x since we are solving the following perturbed system:

A(x + ∆x) = b + ∆b .

The relative error satisfies the following inequality (Theorem 7.27, p. 455, 456):

‖∆x‖
‖x‖ ≤ ‖A‖ ‖A−1‖‖∆b‖

‖b‖ .
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The condition number of the nonsingular matrix A relative to the norm ‖.‖ is (Definition
7.28, p. 456)

K(A) = ‖A‖ ‖A−1‖.
For a nonsingular symmetric matrix the equalities:

‖A‖ = λmax = max
1≤j≤N

|λj | and ‖A−1‖ =
1

λmin
=

1

min
1≤j≤N

|λj |
,

imply that K(A) = λmax

λmin
. In order to estimate the condition number it is important to know

bounds for the largest and the smallest eigenvalue of A. In many application the Gerschgorin
Circle Theorem can be used to estimate these eigenvalues (Theorem 9.13, p. 556).

Gerschgorin Circle Theorem

Let A be an N ×N matrix and Rj denote the circle in the complex plane with center ajj and

radius
N
∑

k=1
k 6=j

|ajk| ; that is

Rj = {z ∈ C | |z − ajj | ≤
N

∑

k=1
k 6=j

|ajk|},

where C denotes the complex plane. The eigenvalues of A are contained within R = ∪N
j=1Rj.

2.2 Consistency, stability and convergence

In this section we prove that under certain conditions the difference between the numerical
and exact solution goes to zero if the step size h goes to zero. To show this we shall give some
definitions.

The second order boundary value problem is given by

−y′′

+ py
′

+ qy = −r , 0 < x < 1 ,

with boundary conditions
y(0) = α and y(1) = β .

The interval [0, 1] is divided into N + 1 equal subintervals whose endpoints are the mesh
points xi = ih, for i = 0, ....N + 1, where h = 1

N+1 .

Truncation error

The truncation error εεε of the numerical scheme

Fw = f (2.1)

is defined as
εj = (Fy − f)j , j = 1, ..., N ,

where the components of y, the exact solution, are given by yj = y(xj). The matrix F and
vector f are given by: F = A/h2 and f = b/h2 where A and b are defined in formula (11.19)

12



on page 661 of Burden and Faires.

As an example we consider the differential equation −y′′

+ qy = −r, which is discretized by:

−wj−1 + 2wj − wj+1

h2
+ qjwj = −rj .

The truncation error follows from the Taylor expansion:

εj = −y′′

j + qjyj + rj +O(h2) .

Combined with equation −y′′

j + qjyj = −rj one obtains:

εj = O(h2). (2.2)

The order of the truncation error is equal to 2 for this method.

Consistency

A finite difference method is called consistent if

lim
h→0

‖εεε‖ = 0 .

From (2.2) it follows that ‖εεε‖ = O(h2) so this numerical scheme is consistent.

Stability

A finite difference scheme is stable, if there is a constant M independent of h, such that

‖F−1‖ ≤M , for h→ 0 .

If a method is stable then the resulting system has a unique solution. The matrix F for our
method is symmetric. This implies that the eigenvalues are real numbers and

‖F−1‖ =
1

λmin
.

If the function q satisfies the following inequalities 0 < qmin ≤ q(x) ≤ qmax for 0 ≤ x ≤ 1,
then Gerschgorin’s theorem implies

qmin ≤ λj ≤ qmax +
4

h2
for j = 1, ..., N .

From this it follows that ‖F−1‖ ≤ 1
qmin

so the numerical scheme is stable.

If q ≡ 0 then the Gerschgorin’s theorem does not give usefull information for the smallest
eigenvalue. However for this special case the eigenvalues of F are known:

λj = (2 − 2 cos(N + 1 − j)hπ)/h2 , j = 1, ..., N .

From this it follows that

λmin = (2 − 2 coshπ)/h2 = (4 sin2 hπ

2
)/h2 ≈ π2 .

So also for the case q ≡ 0 the numerical scheme is stable.
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Convergence

Suppose w is the solution of (2.1). A numerical scheme is called convergent if the global error
y − w has the property

lim
h→0

‖y − w‖ = 0 .

In the next theorem we give a relation between the notions: consistency, stability, and con-
vergence.

Theorem 2.2.1 If a numerical scheme is stable and consistent, then it is convergent.

Proof

The global error y − w is a solution of the system

F (y − w) = Fy − Fw = f + εεε− f = εεε ,

which implies: y − w = F−1εεε. Taking the norm of both sides yields

‖y − w‖ ≤ ‖F−1‖ ‖εεε‖ .

Using the stability and the consistency it follows that

lim
h→0

‖y − w‖ = 0 .

�

Note that consistency alone is not sufficient to guarantee convergence.

Example (convergence)
Suppose that heat transfer in a rod is described by the boundary value problem:

−y′′

= 25e5x , 0 < x < 1 ,

y(0) = y(1) = 0 .

Due to the heat source (25e5x) we expect that the temperature y is positive. In Figure 2.1
the graphs of y and the numerical solutions obtained with the step sizes: h = 1

4 ,
1
8 and 1

16
are given. Note that there is a rapid convergence from the numerical solutions to the exact
solution. The accuracy using h = 1

16 is sufficient from engineering point of view.

As a variant of this application we consider

−y′′

+ 9y = 25e5x , 0 < x < 1 ,

y(0) = y(1) = 0 .

The additional term 9y describes heat loss due to the temperature difference of the rod and
its surroundings. The exact and numerical solutions are given in Figure 2.2. Due to the extra
heat loss the temperature is indeed less than in the first example (Figure 2.1). On the other
hand the convergence is similar for both problems.
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Figure 2.1: The exact and numerical solutions of the stationary heat problem

2.3 The condition number of the discretization matrix

For q ≡ 0 we have seen that

λmin ' π2 and λmax ' 4

h2
.

This means that K(F ) = 4
π2h2 . If h goes to zero the condition number of F goes to infinity.

So it seems that we are unable to solve this problem numerically in a stable way. In practice
the error bounds appears to be too pessimistic. For a better estimate we use the following
analysis. The numerical solution w satisfies

Fw = f .

With a perturbation ∆f of f the computed solution satisfies

F (w + ∆w) = f + ∆f ,

so ∆w is a solution of F∆w = ∆f . From this we deduce

‖∆w‖ = ‖F−1∆f‖ ≤ 1

λmin
‖∆f‖ ,

and for the relative error we obtain the bound

‖∆w‖
‖w‖ ≤ 1

λmin

‖f‖
‖w‖ · ‖∆f‖

‖f‖ .

In this bound the condition number K(F ) is replaced by the ”effective” condition number
1

λmin

‖f‖
‖w‖ . Since λmin ' π2 and in many applications

‖f‖
‖w‖ is bounded if h goes to zero we have

that the ”effective” condition number is bounded independent of h.
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Figure 2.2: The exact and numerical solutions of the stationary heat problem with additional
heat loss

2.4 Neumann boundary condition

In all our examples we have used Dirichlet boundary conditions. What about other boundary
conditions? We only consider the Neumann boundary condition

dy

dx
(1) = 0 . (2.3)

Discretization

We introduce a virtual point xN+2 = (N + 2)h = 1 + h. For j = N + 1 the equation

−wN + 2wN+1 − wN+2

h2
+ qN+1wN+1 = −rN+1 (2.4)

is valid. Discretization of (2.3) gives

wN+2 − wN

2h
= 0 ,

so wN+2 = wN . Substituting this into (2.4) and division by 2 leads to

−wN + wN+1

h2
+

1

2
qN+1wN+1 = −1

2
rN+1 . (2.5)

The motivation to divide by 2 is to obtain a symmetric matrix F . Note that now the vector
w has length N + 1.

Convergence

Using a Taylor expansion it is easy to see that

yN+2 = yN +O(h3) ,
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so the truncation error in (2.5) is equal to O(h) and in all the other equations it is equal to
O(h2). In the Dirichlet case the truncation error is O(h2) in all equations. Does this mean
that the global error for the Neumann boundary condition is also O(h)? The answer is no, it
is possible to show that the global error remains O(h2).

To show that the global error is O(h2) we consider the case q ≡ 0. It appears that the
resulting numerical scheme is stable, so ‖F−1‖ is bounded independent of h. The truncation
error is splitted into two parts, one proportional to h2 and the other proportional to h:

Fy = f + h2u + hv , with v =











0
...
0

vN+1











.

The global error e = y − w is also splitted into two parts: e = e(1) + e(2), where

Fe(1) = h2u and Fe(2) = hv .

Due to stability we obtain ‖e(1)‖ = O(h2), so it remains to bound ‖e(2)‖. It is possible to

give an expression for e
(2)
j :

e
(2)
j = jh3vN+1 , j = 1, ..., N + 1 .

The inequality jh ≤ 1 can be used to show that ‖e(2)‖ = O(h2). So the norm of the global
error is O(h2).

2.5 A general boundary value problem

A general second order boundary value problem is given by

−(sy
′

)
′

+ py
′

+ qy = −r , a < x < b ,

with boundary conditions
y(a) = α and y

′

(b) = β .

Discretization in point xj yields

−sj+ 1

2

(wj+1 − wj) + sj− 1

2

(wj − wj−1)

h2
+ pj

wj+1 − wj−1

2h
+ qjwj = −rj , j = 1, ..., N + 1 .

(2.6)
Note that if pj 6= 0 then the discretization matrix is nonsymmetric. The Dirichlet boundary
condition at x = a leads to w0 = α which can be directly substituted into (2.6) for j = 1.
Introducing a virtual point, the boundary condition at x = b is discretized as follows:

1

2
(sN+1 1

2

wN+2 − wN+1

h
+ sN+ 1

2

wN+1 − wN

h
) = s(b)β .

In this expression the left-hand side is an average of

sN+1 1

2

dy

dx
(b+

1

2
h) and sN− 1

2

dy

dx
(b− 1

2
h) .

This average is an approximation of sN+1
dy
dx

(b) = s(b)β. We choose for this formulation in

order to replace expression sN+1 1

2

wN+2−wN+1

h
in equation (2.6) for j = N+1, by the expression

−sN+ 1

2

wN+1−wN

h
+ 2hs(b)β.
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2.6 The convection-diffusion equation

In the previous section we have discretized the first order derivative in the differential equation
by a central difference quotient. In some applications this leads to unphysical wiggles in the
numerical solution. To illustrate this we use the following boundary value problem:

−y′′

+ py
′

= 0 , 0 < x < 1 ,

y(0) = 1 , y(1) = α ,

with p > 0. This equation can be seen as a model for a heat transport problem, where there
is transport by conduction −y′′

(diffusion) and by convection py
′

. This equation is known as
the convection-diffusion equation.

Central difference quotient

Application of central difference quotients to all the terms leads to the following linear system
of equations:

1

h2









2 −1 + ph
2

−1 − ph
2 2

. . . ∅

∅ . . .
. . .

. . .





















w1
...
...
wN













=
1

h2















1 + ph
2

0
...
0

(1 − ph
2 )α















.

Note that the discretization matrix becomes lower triangular if ph = 2. This implies that the
numerical solution is independent of the value of α. This is incorrect. It appears indeed that
the numerical solution is only acceptable if h is chosen such that ph < 2.

Upwind difference quotient

In the case that the condition ph < 2 leads to a very small step size h, it is better to use an
upwind difference quotient. This means that the term py

′

j is approximated by

p
wj − wj−1

h
if v ≥ 0 and

p
wj+1 − wj

h
if v < 0 .

Example (convection-diffusion)
To illustrate the difference between a central and upwind discretization, we consider the
following boundary value problem:

−y′′

+ py
′

= 1 , 0 < x < 1 ,

y(0) = y(1) = 0 .

The numerical solutions are computed for h = 0.1 and p = 10, 20 and 100 (see Figure
Figuur 2.3, 2.4 and 2.5). For p = 10 the inequality ph < 2 holds and the results obtained
with a central difference quotient are better than the ones obtained with an upwind difference
quotient. For p = 20 we note that ph = 2 so the numerical solution obtained from the central
difference quotient is independent of the boundary condition in x = 1. For p = 100 we
observe that the solution obtained by upwind differences leads to an acceptable numerical
solution, whereas that obtained by central differences is not acceptable due to severe wiggles.
Furthermore the numerical solution with central differences has large errors.
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Figure 2.3: The solution of the convection-diffusion problem for p = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

x

Te
m

pe
ra

tu
re

Exact  
Central
Upwind 

Figure 2.4: The solution of the convection-diffusion problem for p = 20
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Figure 2.5: The solution of the convection-diffusion problem for p = 100
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